SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization

Cited 185 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorA Kumar-
dc.contributor.authorG D Park-
dc.contributor.authorS K S Patel-
dc.contributor.authorS Kondaveeti-
dc.contributor.authorS Otari-
dc.contributor.authorM Z Anwar-
dc.contributor.authorV C Kalia-
dc.contributor.authorY Singh-
dc.contributor.authorS C Kim-
dc.contributor.authorB K Cho-
dc.contributor.authorJung Hoon Sohn-
dc.contributor.authorD R Kim-
dc.contributor.authorY C Kang-
dc.contributor.authorJ K Lee-
dc.date.accessioned2019-01-23T16:31:10Z-
dc.date.available2019-01-23T16:31:10Z-
dc.date.issued2019-
dc.identifier.issn1385-8947-
dc.identifier.uri10.1016/j.cej.2018.11.052ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/18289-
dc.description.abstractNovel mesoporous SiO2 microparticles were synthesized by spray pyrolysis using multiwalled carbon nanotubes (MCNTs) as a template. The synthesized multicompartment structure with uniform pores of 12.0 nm was used to immobilize lipase from Thermomyces lanuginosus. The total surface area of mesoporous SiO2 microparticles prepared from silica colloidal solution was increased by 26-folds compared to that of dense SiO2 particles (494 vs 19.0 m2 g-1, respectively). Mesoporous SiO2 particles showed 236% higher protein loading for lipase, than dense SiO2 particles. The maximum velocity (Vmax) and catalytic efficiencies of immobilized lipase were 3.80 and 5.90 folds higher than that of free enzyme. Contact angle analysis revealed increased hydrophobicity of the mesoporous particles, which is advantageous for lid opening at the active center, and increased activity after immobilization. We next developed a lipase/SiO2/glassy carbon electrode (GCE) biosensors. Cyclic voltammetric results showed linear responses of the lipase/SiO2/GCE bioelectrode towards tributyrin (50-300 mg dL-1) as a surface-limited reaction in Tris-HCl buffer. After 12 repetitive uses, dense SiO2- and mesoporous SiO2-bound lipase retained 74.2 and 95.4% of its original activities, respectively. Thus, given their desirable characteristics and industrial utility, greatly porous SiO2 particles may provide an excellent support for enzyme immobilization in biosensor development or biocatalysis in organic media.-
dc.publisherElsevier-
dc.titleSiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization-
dc.title.alternativeSiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization-
dc.typeArticle-
dc.citation.titleChemical Engineering Journal-
dc.citation.number0-
dc.citation.endPage1264-
dc.citation.startPage1252-
dc.citation.volume359-
dc.contributor.affiliatedAuthorJung Hoon Sohn-
dc.contributor.alternativeNameKumar-
dc.contributor.alternativeName박기대-
dc.contributor.alternativeNamePatel-
dc.contributor.alternativeNameKondaveeti-
dc.contributor.alternativeNameOtari-
dc.contributor.alternativeNameAnwar-
dc.contributor.alternativeNameKalia-
dc.contributor.alternativeNameSingh-
dc.contributor.alternativeName김선창-
dc.contributor.alternativeName조병관-
dc.contributor.alternativeName손정훈-
dc.contributor.alternativeName김동립-
dc.contributor.alternativeName강윤찬-
dc.contributor.alternativeName이정걸-
dc.identifier.bibliographicCitationChemical Engineering Journal, vol. 359, pp. 1252-1264-
dc.identifier.doi10.1016/j.cej.2018.11.052-
dc.subject.keywordBiosensor-
dc.subject.keywordEnzyme immobilization-
dc.subject.keywordHydrophobicity-
dc.subject.keywordMesoporous silica-
dc.subject.keywordStability-
dc.subject.localbiosensor-
dc.subject.localBio-sensor-
dc.subject.localBiosensor-
dc.subject.localbiosensors-
dc.subject.localBiosensors-
dc.subject.localenzyme immobilization-
dc.subject.localEnzyme immobilization-
dc.subject.localhydrophobicity-
dc.subject.localHydrophobicity-
dc.subject.localMesoporous silica-
dc.subject.localStability-
dc.subject.localstability-
dc.description.journalClassY-
Appears in Collections:
Synthetic Biology and Bioengineering Research Institute > Synthetic Biology Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.