c-MYC drives breast cancer metastasis to the brain, but promotes synthetic lethality with TRAIL

Cited 62 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorH Y Lee-
dc.contributor.authorJ Cha-
dc.contributor.authorSeon-Kyu Kim-
dc.contributor.authorJ H Park-
dc.contributor.authorK H Song-
dc.contributor.authorP Kim-
dc.contributor.authorM Y Kim-
dc.date.accessioned2019-04-09T16:30:13Z-
dc.date.available2019-04-09T16:30:13Z-
dc.date.issued2019-
dc.identifier.issn1541-7786-
dc.identifier.uri10.1158/1541-7786.MCR-18-0630ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/18430-
dc.description.abstractBrain metastasis in breast cancer is particularly deadly, but effective treatments remain out of reach due to insufficient information about the mechanisms underlying brain metastasis and the potential vulnerabilities of brain-metastatic breast cancer cells. Here, human breast cancer cells and their brain-metastatic derivatives (BrMs) were used to investigate synthetic lethal interactions in BrMs. First, it was demonstrated that c-MYC activity is increased in BrMs and is required for their brain-metastatic ability in a mouse xenograft model. Specifically, c-MYC enhanced brain metastasis by facilitating the following processes within the brain microenvironment: (i) invasive growth of BrMs, (ii) macrophage infiltration, and (iii) GAP junction formation between BrMs and astrocytes by upregulating connexin 43 (GJA1/Cx43). Furthermore, RNA-sequencing (RNA-seq) analysis uncovered a set of c-MYC-regulated genes whose expression is associated with higher risk for brain metastasis in breast cancer patients. Paradoxically, however, increased c-MYC activity in BrMs rendered them more susceptible to TRAIL (TNF-related apoptosis-inducing ligand)-induced apoptosis. In summary, these data not only reveal the brain metastasis-promoting role of c-MYC and a subsequent synthetic lethality with TRAIL, but also delineate the underlying mechanism. This suggests TRAIL-based approaches as potential therapeutic options for brain-metastatic breast cancer. IMPLICATIONS: This study discovers a paradoxical role of c-MYC in promoting metastasis to the brain and in rendering brain-metastatic cells more susceptible to TRAIL, which suggests the existence of an Achilles' heel, thus providing a new therapeutic opportunity for breast cancer patients.-
dc.publisherAmer Assoc Cancer Research-
dc.titlec-MYC drives breast cancer metastasis to the brain, but promotes synthetic lethality with TRAIL-
dc.title.alternativec-MYC drives breast cancer metastasis to the brain, but promotes synthetic lethality with TRAIL-
dc.typeArticle-
dc.citation.titleMolecular Cancer Research-
dc.citation.number2-
dc.citation.endPage554-
dc.citation.startPage544-
dc.citation.volume17-
dc.contributor.affiliatedAuthorSeon-Kyu Kim-
dc.contributor.alternativeName이호연-
dc.contributor.alternativeName차정화-
dc.contributor.alternativeName김선규-
dc.contributor.alternativeName박준형-
dc.contributor.alternativeName송기훈-
dc.contributor.alternativeName김필남-
dc.contributor.alternativeName김미영-
dc.identifier.bibliographicCitationMolecular Cancer Research, vol. 17, no. 2, pp. 544-554-
dc.identifier.doi10.1158/1541-7786.MCR-18-0630-
dc.description.journalClassY-
Appears in Collections:
Aging Convergence Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.