Comparative molecular analysis of endurance exercise in vivo with electrically stimulated in vitro myotube contraction

Cited 4 time in scopus
Metadata Downloads
Title
Comparative molecular analysis of endurance exercise in vivo with electrically stimulated in vitro myotube contraction
Author(s)
Young Hoon Son; Seung Min Lee; Seol Hee Lee; Jong Hyeon Yoon; Jae Sook Kang; Yong Ryoul YangKi-Sun Kwon
Bibliographic Citation
Journal of Applied Physiology, vol. 127, no. 6, pp. 1742-1753
Publication Year
2019
Abstract
Exercise has positive effects on health and improves a variety of disease conditions. An in vitro model of exercise has been developed to better understand its molecular mechanisms. While various conditions have been used to mimic in vivo exercise, no specific conditions have matched a specific type of in vivo exercise. Here, we screened various electrical pulse stimulation (EPS) conditions and compared the molecular events under each condition in myotube culture with that obtained under voluntary wheel running (VWR), a mild endurance exercise, in mice. Both EPS and VWR upregulated the mRNA levels of genes involved in the slow-type twitch (Myh7 and Myh2) and myogenesis (Myod and Myog) and increased the protein expression of peroxisome proliferator-activated receptor-γ coactivator-1α, which is involved in mitochondrial biogenesis. These changes were accompanied by activation of p38 and AMPK. However, neither condition induced the expression of muscle-specific E3 ligases such as MAFbx and MuRF1. Both EPS and VWR consistently induced antioxidant genes such as Sod3 and Gpx4 but did not cause similar changes in the expression levels of the calcium channel/pump-related genes Ryr and Serca. Furthermore, both EPS and VWR reduced glycogen levels but not lactate levels as assessed in post-EPS culture medium and post-VWR serum, respectively. Thus we identified an in vitro EPS condition that effectively mimics VWR in mice, which can facilitate further studies of the detailed molecular mechanisms of endurance exercise in the absence of interference from multiple tissues and organs.NEW & NOTEWORTHY This study establishes an optimal condition for electrical pulse stimulation (EPS) in myotubes that shows a similar molecular signature as voluntary wheel running. The specific EPS condition 1) upregulates the mRNA of slow-twitch muscle components and myogenic transcription factors, 2) induces antioxidant genes without any muscle damage, and 3) promotes peroxisome proliferator-activated receptor-γ coactivator-1α and its upstream regulators involved in mitochondrial biogenesis.
Keyword
electrical pulse stimulationmyotubeskeletal musclevoluntary wheel running
ISSN
8750-7587
Publisher
Amer Physiological Soc
DOI
http://dx.doi.org/10.1152/japplphysiol.00091.2019
Type
Article
Appears in Collections:
Division of Research on National Challenges > Aging Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.