CRISPR interference-mediated gene regulation in Pseudomonas putida KT2440

Cited 29 time in scopus
Metadata Downloads
Title
CRISPR interference-mediated gene regulation in Pseudomonas putida KT2440
Author(s)
Seong Keun Kim; P K Yoon; Soo Jung Kim; Seung Gyun Woo; Eugene RhaHyewon Lee; Soo Jin Yeom; Haseong KimDae-Hee LeeSeung Goo Lee
Bibliographic Citation
Microbial Biotechnology, vol. 13, no. 1, pp. 210-221
Publication Year
2020
Abstract
Targeted gene regulation is indispensable for reprogramming a cellular network to modulate a microbial phenotype. Here, we adopted the type II CRISPR interference (CRISPRi) system for simple and efficient regulation of target genes in Pseudomonas putida KT2440. A single CRISPRi plasmid was generated to express a nuclease-deficient Cas9 gene and a designed single guide RNA, under control of l-rhamnose-inducible Prha BAD and the constitutive Biobrick J23119 promoter respectively. Two target genes were selected to probe the CRISPRi-mediated gene regulation: exogenous green fluorescent protein on the multicopy plasmid and endogenous glpR on the P. putida KT2440 chromosome, encoding GlpR, a transcriptional regulator that represses expression of the glpFKRD gene cluster for glycerol utilization. The CRISPRi system successfully repressed the two target genes, as evidenced by a reduction in the fluorescence intensity and the lag phase of P. putida KT2440 cell growth on glycerol. Furthermore, CRISPRi-mediated repression of glpR improved both the cell growth and glycerol utilization, resulting in the enhanced production of mevalonate in an engineered P. putida KT2440 harbouring heterologous genes for the mevalonate pathway. CRISPRi is expected to become a robust tool to reprogram P. putida KT2440 for the development of microbial cell factories producing industrially valuable products.
ISSN
1571-7907
Publisher
Wiley
DOI
http://dx.doi.org/10.1111/1751-7915.13382
Type
Article
Appears in Collections:
Synthetic Biology and Bioengineering Research Institute > Synthetic Biology Research Center > 1. Journal Articles
Synthetic Biology and Bioengineering Research Institute > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.