Inhibitory effects of myricetin on lipopolysaccharide-induced neuroinflammation

Cited 15 time in scopus
Metadata Downloads
Title
Inhibitory effects of myricetin on lipopolysaccharide-induced neuroinflammation
Author(s)
J H Jang; S H Lee; Kyungsook Jung; H Yoo; G Park
Bibliographic Citation
Brain Sciences, vol. 10, pp. 32-32
Publication Year
2020
Abstract
Microglial activation elicits an immune response by producing proinflammatory modulators and cytokines that cause neurodegeneration. Therefore, a plausible strategy to prevent neurodegeneration is to inhibit neuroinflammation caused by microglial activation. Myricetin, a natural flavanol, induces neuroprotective effects by inhibiting inflammation and oxidative stress. However, whether myricetin inhibits lipopolysaccharide (LPS)-induced neuroinflammation in hippocampus and cortex regions is not known. To test this, we examined the effects of myricetin on LPS-induced neuroinflammation in a microglial BV2 cell line. We found that myricetin significantly downregulated several markers of the neuroinflammatory response in LPS-induced activated microglia, including inducible nitric oxide (NO) synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory modulators and cytokines such as prostaglandin E2 (PGE2), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α). Moreover, myricetin suppressed the expression of c-Jun NH2-terminal kinase (JNK), p38 MAPK, and extracellular signal-regulated kinase (ERK), which are components of the mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, myricetin inhibited LPS-induced macrophages and microglial activation in the hippocampus and cortex of mice. Based on our results, we suggest that myricetin inhibits neuroinflammation in BV2 microglia by inhibiting the MAPK signaling pathway and the production of proinflammatory modulators and cytokines. Therefore, this could potentially be used for the treatment of neuroinflammatory diseases.
Keyword
cytokinesinflammationlipopolysaccharide-induced neuroinflammationmicrogliamyricetin
ISSN
2076-3425
Publisher
MDPI
DOI
http://dx.doi.org/10.3390/brainsci10010032
Type
Article
Appears in Collections:
Jeonbuk Branch Institute > Functional Biomaterial Research Center > 1. Journal Articles
Files in This Item:

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.