Genomic and Metabolic Insights into Denitrification, Sulfur Oxidation, and Multidrug Efflux Pump Mechanisms in the Bacterium Rhodoferax sediminis sp. nov.

Cited 29 time in scopus
Metadata Downloads
Title
Genomic and Metabolic Insights into Denitrification, Sulfur Oxidation, and Multidrug Efflux Pump Mechanisms in the Bacterium Rhodoferax sediminis sp. nov.
Author(s)
C Z Jin; Y Zhuo; X Wu; So Ra Ko; T Li; F J Jin; Chi-Yong Ahn; Hee-Mock Oh; Hyung Gwan Lee; L Jin
Bibliographic Citation
Microorganisms, vol. 8, pp. 262-262
Publication Year
2020
Abstract
This genus contains both phototrophs and nonphototrophic members. Here, we present a high-quality complete genome of the strain CHu59-6-5T, isolated from a freshwater sediment. The circular chromosome (4.39 Mbp) of the strain CHu59-6-5T has 64.4% G+C content and contains 4240 genes, of which a total of 3918 genes (92.4%) were functionally assigned to the COG (clusters of orthologous groups) database. Functional genes for denitrification (narGHJI, nirK and qnor) were identified on the genomes of the strain CHu59-6-5T, except for N2O reductase (nos) genes for the final step of denitrification. Genes (soxBXAZY) for encoding sulfur oxidation proteins were identified, and the FSD and soxF genes encoding the monomeric flavoproteins which have sulfide dehydrogenase activities were also detected. Lastly, genes for the assembly of two different RND (resistance-nodulation division) type efflux systems and one ABC (ATP-binding cassette) type efflux system were identified in the Rhodoferax sediminis CHu59-6-5T. Phylogenetic analysis based on 16S rRNA sequences and Average Nucleotide Identities (ANI) support the idea that the strain CHu59-6-5T has a close relationship to the genus Rhodoferax. A polyphasic study was done to establish the taxonomic status of the strain CHu59-6-5T. Based on these data, we proposed that the isolate be classified to the genus Rhodoferax as Rhodoferax sediminis sp. nov. with isolate CHu59-6-5T.
Keyword
RND efflux systemsRhodoferaxRhodoferax sediminisdenitrificationsulfur oxidation
ISSN
2076-2607
Publisher
MDPI
Full Text Link
http://dx.doi.org/10.3390/microorganisms8020262
Type
Article
Appears in Collections:
Synthetic Biology and Bioengineering Research Institute > Cell Factory Research Center > 1. Journal Articles
Files in This Item:

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.