DC Field | Value | Language |
---|---|---|
dc.contributor.author | M J Choi | - |
dc.contributor.author | S B Jung | - |
dc.contributor.author | S E Lee | - |
dc.contributor.author | S G Kang | - |
dc.contributor.author | J H Lee | - |
dc.contributor.author | M J Ryu | - |
dc.contributor.author | H K Chung | - |
dc.contributor.author | J Y Chang | - |
dc.contributor.author | Y K Kim | - |
dc.contributor.author | H J Hong | - |
dc.contributor.author | H Kim | - |
dc.contributor.author | H J Kim | - |
dc.contributor.author | Chul Ho Lee | - |
dc.contributor.author | A Mardinoglu | - |
dc.contributor.author | H S Yi | - |
dc.contributor.author | M Shong | - |
dc.date.accessioned | 2020-04-24T16:30:23Z | - |
dc.date.available | 2020-04-24T16:30:23Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 0012-186X | - |
dc.identifier.uri | 10.1007/s00125-019-05082-7 | ko |
dc.identifier.uri | https://oak.kribb.re.kr/handle/201005/19388 | - |
dc.description.abstract | AIMS/HYPOTHESIS: Mitochondrial oxidative phosphorylation (OxPhos) is essential for energy production and survival. However, the tissue-specific and systemic metabolic effects of OxPhos function in adipocytes remain incompletely understood. METHODS: We used adipocyte-specific Crif1 (also known as Gadd45gip1) knockout (AdKO) mice with decreased adipocyte OxPhos function. AdKO mice fed a normal chow or high-fat diet were evaluated for glucose homeostasis, weight gain and energy expenditure (EE). RNA sequencing of adipose tissues was used to identify the key mitokines affected in AdKO mice, which included fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15). For in vitro analysis, doxycycline was used to pharmacologically decrease OxPhos in 3T3L1 adipocytes. To identify the effects of GDF15 and FGF21 on the metabolic phenotype of AdKO mice, we generated AdKO mice with global Gdf15 knockout (AdGKO) or global Fgf21 knockout (AdFKO). RESULTS: Under high-fat diet conditions, AdKO mice were resistant to weight gain and exhibited higher EE and improved glucose tolerance. In vitro pharmacological and in vivo genetic inhibition of OxPhos in adipocytes significantly upregulated mitochondrial unfolded protein response-related genes and secretion of mitokines such as GDF15 and FGF21. We evaluated the metabolic phenotypes of AdGKO and AdFKO mice, revealing that GDF15 and FGF21 differentially regulated energy homeostasis in AdKO mice. Both mitokines had beneficial effects on obesity and insulin resistance in the context of decreased adipocyte OxPhos, but only GDF15 regulated EE in AdKO mice. CONCLUSIONS/INTERPRETATION: The present study demonstrated that the adipose tissue adaptive mitochondrial stress response affected systemic energy homeostasis via cell-autonomous and non-cell-autonomous pathways. We identified novel roles for adipose OxPhos and adipo-mitokines in the regulation of systemic glucose homeostasis and EE, which facilitated adaptation of an organism to local mitochondrial stress. | - |
dc.publisher | Springer | - |
dc.title | An adipocyte-specific defect in oxidative phosphorylation increases systemic energy expenditure and protects against diet-induced obesity in mouse models | - |
dc.title.alternative | An adipocyte-specific defect in oxidative phosphorylation increases systemic energy expenditure and protects against diet-induced obesity in mouse models | - |
dc.type | Article | - |
dc.citation.title | Diabetologia | - |
dc.citation.number | 4 | - |
dc.citation.endPage | 852 | - |
dc.citation.startPage | 837 | - |
dc.citation.volume | 63 | - |
dc.contributor.affiliatedAuthor | Chul Ho Lee | - |
dc.contributor.alternativeName | 최민정 | - |
dc.contributor.alternativeName | 정샛별 | - |
dc.contributor.alternativeName | 이승은 | - |
dc.contributor.alternativeName | 강슬기 | - |
dc.contributor.alternativeName | 이주희 | - |
dc.contributor.alternativeName | 류민정 | - |
dc.contributor.alternativeName | 정호균 | - |
dc.contributor.alternativeName | 장준영 | - |
dc.contributor.alternativeName | 김용경 | - |
dc.contributor.alternativeName | 홍현정 | - |
dc.contributor.alternativeName | 김하일 | - |
dc.contributor.alternativeName | 김현진 | - |
dc.contributor.alternativeName | 이철호 | - |
dc.contributor.alternativeName | Mardinoglu | - |
dc.contributor.alternativeName | 이현승 | - |
dc.contributor.alternativeName | 송민호 | - |
dc.identifier.bibliographicCitation | Diabetologia, vol. 63, no. 4, pp. 837-852 | - |
dc.identifier.doi | 10.1007/s00125-019-05082-7 | - |
dc.subject.keyword | Adipose tissue | - |
dc.subject.keyword | Energy metabolism | - |
dc.subject.keyword | Insulin resistance | - |
dc.subject.keyword | Mitochondria | - |
dc.subject.keyword | Mitokine | - |
dc.subject.local | Adipose tissue | - |
dc.subject.local | adipose tissue | - |
dc.subject.local | Energy metabolism | - |
dc.subject.local | Energy Metabolism | - |
dc.subject.local | energy metabolism | - |
dc.subject.local | Insulin resistance | - |
dc.subject.local | insulin resistance | - |
dc.subject.local | Mitochondria | - |
dc.subject.local | mitochondria | - |
dc.subject.local | Mitokine | - |
dc.description.journalClass | Y | - |
There are no files associated with this item.
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.