The microtubule-associated histone methyltransferase SET8, facilitated by transcription factor LSF, methylates alpha-tubulin

Cited 15 time in scopus
Metadata Downloads
Title
The microtubule-associated histone methyltransferase SET8, facilitated by transcription factor LSF, methylates alpha-tubulin
Author(s)
H G Chin; P O Esteve; C Ruse; Jiyoung Lee; S E Schaus; S Pradhan; U Hansen
Bibliographic Citation
Journal of Biological Chemistry, vol. 295, no. 14, pp. 4748-4759
Publication Year
2020
Abstract
Microtubules are cytoskeletal structures critical for mitosis, cell motility, and protein and organelle transport and are a validated target for anticancer drugs. However, how tubulins are regulated and recruited to support these distinct cellular processes is incompletely understood. Posttranslational modifications of tubulins are proposed to regulate microtubule function and dynamics. Although many of these modifications have been investigated, only one prior study reports tubulin methylation and an enzyme responsible for this methylation. Here we used in vitro radiolabeling, MS, and immunoblotting approaches to monitor protein methylation and immunoprecipitation, immunofluorescence, and pulldown approaches to measure protein-protein interactions. We demonstrate that N-lysine methyltransferase 5A (KMT5A or SET8/PR-Set7), which methylates lysine 20 in histone H4, bound α-tubulin and methylated it at a specific lysine residue, Lys311 Furthermore, late SV40 factor (LSF)/CP2, a known transcription factor, bound both α-tubulin and SET8 and enhanced SET8-mediated α-tubulin methylation in vitro In addition, we found that the ability of LSF to facilitate this methylation is countered by factor quinolinone inhibitor 1 (FQI1), a specific small-molecule inhibitor of LSF. These findings suggest the general model that microtubule-associated proteins, including transcription factors, recruit or stimulate protein-modifying enzymes to target tubulins. Moreover, our results point to dual functions for SET8 and LSF not only in chromatin regulation but also in cytoskeletal modification.
Keyword
posttranslational modification (PTM)protein methylationtranscription factor CP2 (TFCP2)SET8cancercytoskeletonlysine methyltransferase 5A (KMT5A)mammalian cellstranscription factor LSFtubulin
ISSN
0021-9258
Publisher
Amer Soc Biochemistry Molecular Biology Inc
Full Text Link
http://dx.doi.org/10.1074/jbc.RA119.010951
Type
Article
Appears in Collections:
Jeonbuk Branch Institute > Biological Resource Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.