A machine learning-based identification of genes affecting the pharmacokinetics of tacrolimus using the DMETTM plus platform

Cited 12 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorJ A Gim-
dc.contributor.authorY Kwon-
dc.contributor.authorH A Lee-
dc.contributor.authorKyeong-Ryoon Lee-
dc.contributor.authorS Kim-
dc.contributor.authorY Choi-
dc.contributor.authorY K Kim-
dc.contributor.authorH Lee-
dc.date.accessioned2020-04-24T16:30:37Z-
dc.date.available2020-04-24T16:30:37Z-
dc.date.issued2020-
dc.identifier.issn1422-0067-
dc.identifier.uri10.3390/ijms21072517ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/19450-
dc.description.abstractTacrolimus is an immunosuppressive drug with a narrow therapeutic index and larger interindividual variability. We identified genetic variants to predict tacrolimus exposure in healthy Korean males using machine learning algorithms such as decision tree, random forest, and least absolute shrinkage and selection operator (LASSO) regression. rs776746 (CYP3A5) and rs1137115 (CYP2A6) are single nucleotide polymorphisms (SNPs) that can affect exposure to tacrolimus. A decision tree, when coupled with random forest analysis, is an efficient tool for predicting the exposure to tacrolimus based on genotype. These tools are helpful to determine an individualized dose of tacrolimus.-
dc.publisherMDPI-
dc.titleA machine learning-based identification of genes affecting the pharmacokinetics of tacrolimus using the DMETTM plus platform-
dc.title.alternativeA machine learning-based identification of genes affecting the pharmacokinetics of tacrolimus using the DMETTM plus platform-
dc.typeArticle-
dc.citation.titleInternational Journal of Molecular Sciences-
dc.citation.number7-
dc.citation.endPage2517-
dc.citation.startPage2517-
dc.citation.volume21-
dc.contributor.affiliatedAuthorKyeong-Ryoon Lee-
dc.contributor.alternativeName김정안-
dc.contributor.alternativeName권용한-
dc.contributor.alternativeName이현아-
dc.contributor.alternativeName이경륜-
dc.contributor.alternativeName김수현-
dc.contributor.alternativeName최윤정-
dc.contributor.alternativeName김유경-
dc.contributor.alternativeNameLee-
dc.identifier.bibliographicCitationInternational Journal of Molecular Sciences, vol. 21, no. 7, pp. 2517-2517-
dc.identifier.doi10.3390/ijms21072517-
dc.subject.keyworddecision tree-
dc.subject.keywordgenotype-
dc.subject.keywordmachine learning-
dc.subject.keywordrandom forest-
dc.subject.keywordtacrolimus-
dc.subject.localdecision tree-
dc.subject.localGenotype-
dc.subject.localgenotype-
dc.subject.localMachine learning-
dc.subject.localmachine learning-
dc.subject.localRandom forest-
dc.subject.localrandom forest-
dc.subject.localRandom forests-
dc.subject.localRandom Forest-
dc.subject.localTacrolimus-
dc.subject.localtacrolimus-
dc.description.journalClassY-
Appears in Collections:
Ochang Branch Institute > Division of National Bio-Infrastructure > Laboratory Animal Resource & Research Center > 1. Journal Articles
Files in This Item:

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.