DC Field | Value | Language |
---|---|---|
dc.contributor.author | J A Gim | - |
dc.contributor.author | Y Kwon | - |
dc.contributor.author | H A Lee | - |
dc.contributor.author | Kyeong-Ryoon Lee | - |
dc.contributor.author | S Kim | - |
dc.contributor.author | Y Choi | - |
dc.contributor.author | Y K Kim | - |
dc.contributor.author | H Lee | - |
dc.date.accessioned | 2020-04-24T16:30:37Z | - |
dc.date.available | 2020-04-24T16:30:37Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 1422-0067 | - |
dc.identifier.uri | 10.3390/ijms21072517 | ko |
dc.identifier.uri | https://oak.kribb.re.kr/handle/201005/19450 | - |
dc.description.abstract | Tacrolimus is an immunosuppressive drug with a narrow therapeutic index and larger interindividual variability. We identified genetic variants to predict tacrolimus exposure in healthy Korean males using machine learning algorithms such as decision tree, random forest, and least absolute shrinkage and selection operator (LASSO) regression. rs776746 (CYP3A5) and rs1137115 (CYP2A6) are single nucleotide polymorphisms (SNPs) that can affect exposure to tacrolimus. A decision tree, when coupled with random forest analysis, is an efficient tool for predicting the exposure to tacrolimus based on genotype. These tools are helpful to determine an individualized dose of tacrolimus. | - |
dc.publisher | MDPI | - |
dc.title | A machine learning-based identification of genes affecting the pharmacokinetics of tacrolimus using the DMETTM plus platform | - |
dc.title.alternative | A machine learning-based identification of genes affecting the pharmacokinetics of tacrolimus using the DMETTM plus platform | - |
dc.type | Article | - |
dc.citation.title | International Journal of Molecular Sciences | - |
dc.citation.number | 7 | - |
dc.citation.endPage | 2517 | - |
dc.citation.startPage | 2517 | - |
dc.citation.volume | 21 | - |
dc.contributor.affiliatedAuthor | Kyeong-Ryoon Lee | - |
dc.contributor.alternativeName | 김정안 | - |
dc.contributor.alternativeName | 권용한 | - |
dc.contributor.alternativeName | 이현아 | - |
dc.contributor.alternativeName | 이경륜 | - |
dc.contributor.alternativeName | 김수현 | - |
dc.contributor.alternativeName | 최윤정 | - |
dc.contributor.alternativeName | 김유경 | - |
dc.contributor.alternativeName | Lee | - |
dc.identifier.bibliographicCitation | International Journal of Molecular Sciences, vol. 21, no. 7, pp. 2517-2517 | - |
dc.identifier.doi | 10.3390/ijms21072517 | - |
dc.subject.keyword | decision tree | - |
dc.subject.keyword | genotype | - |
dc.subject.keyword | machine learning | - |
dc.subject.keyword | random forest | - |
dc.subject.keyword | tacrolimus | - |
dc.subject.local | decision tree | - |
dc.subject.local | Genotype | - |
dc.subject.local | genotype | - |
dc.subject.local | Machine learning | - |
dc.subject.local | machine learning | - |
dc.subject.local | Random forest | - |
dc.subject.local | random forest | - |
dc.subject.local | Random forests | - |
dc.subject.local | Random Forest | - |
dc.subject.local | Tacrolimus | - |
dc.subject.local | tacrolimus | - |
dc.description.journalClass | Y | - |
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.