Cited 11 time in
- Title
- Nanoformulated single-stranded RNA-based adjuvant with a coordinative amphiphile as an effective stabilizer: inducing humoral immune response by activation of antigen-presenting cells
- Author(s)
- H J Park; E K Bang; Jung Joo Hong; S M Lee; H L Ko; H W Kwak; H Park; K W Kang; R H Kim; S R Ryu; Green Kim; Hanseul Oh; H J Kim; K Lee; M Kim; S Y Kim; J O Kim; K El-Baz; H Lee; M Song; Dae Gwin Jeong; G Keum; J H Nam
- Bibliographic Citation
- Angewandte Chemie-International Edition, vol. 59, no. 28, pp. 11540-11549
- Publication Year
- 2020
- Abstract
- As agonists of TLR7/8, single-stranded RNAs (ssRNAs) are safe and promising adjuvants that do not cause off-target effects or innate immune overactivation. However, low stability prevents them from mounting sufficient immune responses. This study evaluates the adjuvant effects of ssRNA derived from the cricket paralysis virus intergenic region internal ribosome entry site, formulated as nanoparticles with a coordinative amphiphile, containing a zinc/dipicolylamine complex moiety as a coordinative phosphate binder, as a stabilizer for RNA-based adjuvants. The nanoformulated ssRNA adjuvant was resistant to enzymatic degradation in vitro and in vivo, and that with a coordinative amphiphile bearing an oleyl group (CA-O) was approximately 100 nm, promoted effective recognition, and improved activation of antigen-presenting cells, leading to better induction of neutralizing antibodies following single immunization. Hence, CA-O may increase the efficacy of ssRNA-based adjuvants, proving useful to meet the urgent need for vaccines during pathogen outbreaks.
- ISSN
- 1433-7851
- Publisher
- Wiley
- Full Text Link
- http://dx.doi.org/10.1002/anie.202002979
- Type
- Article
- Appears in Collections:
- Ochang Branch Institute > Division of National Bio-Infrastructure > National Primate Research Center > 1. Journal Articles
Division of Research on National Challenges > Bionanotechnology Research Center > 1. Journal Articles
- Files in This Item:
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.