The defense response involved in sweetpotato resistance to root-knot nematode Meloidogyne incognita: comparison of root transcriptomes of resistant and susceptible sweetpotato cultivars with respect to induced and constitutive defense responses
Cited 5 time in
- Title
- The defense response involved in sweetpotato resistance to root-knot nematode Meloidogyne incognita: comparison of root transcriptomes of resistant and susceptible sweetpotato cultivars with respect to induced and constitutive defense responses
- Author(s)
- I H Lee; Ho Soo Kim; K J Nam; K L Lee; J W Yang; Sang Soo Kwak; J J Lee; D Shim; Y H Kim
- Bibliographic Citation
- Frontiers in Plant Science, vol. 12, pp. 671677-671677
- Publication Year
- 2021
- Abstract
- Sweetpotato (Ipomoea batatas [L.] Lam) is an economically important, nutrient- and pigment-rich root vegetable used as both food and feed. Root-knot nematode (RKN), Meloidogyne incognita, causes major yield losses in sweetpotato and other crops worldwide. The identification of genes and mechanisms responsible for resistance to RKN will facilitate the development of RKN resistant cultivars not only in sweetpotato but also in other crops. In this study, we performed RNA-seq analysis of RKN resistant cultivars (RCs; Danjami, Pungwonmi and Juhwangmi) and susceptible cultivars (SCs; Dahomi, Shinhwangmi and Yulmi) of sweetpotato infected with M. incognita to examine the induced and constitutive defense response-related transcriptional changes. During induced defense, genes related to defense and secondary metabolites were induced in SCs, whereas those related to receptor protein kinase signaling and protein phosphorylation were induced in RCs. In the uninfected control, genes involved in proteolysis and biotic stimuli showed differential expression levels between RCs and SCs during constitutive defense. Additionally, genes related to redox regulation, lipid and cell wall metabolism, protease inhibitor and proteases were putatively identified as RKN defense-related genes. The root transcriptome of SCs was also analyzed under uninfected conditions, and several potential candidate genes were identified. Overall, our data provide key insights into the transcriptional changes in sweetpotato genes that occur during induced and constitutive defense responses against RKN infection.
- Keyword
- Constitutive defenseInduced defense responseResistant cultivarsRoot-knot nematodesSusceptible cultivarSweetpotatoTranscriptome
- ISSN
- 1664-462X
- Publisher
- Frontiers Media Sa
- DOI
- http://dx.doi.org/10.3389/fpls.2021.671677
- Type
- Article
- Appears in Collections:
- Division of Research on National Challenges > Plant Systems Engineering Research > 1. Journal Articles
- Files in This Item:
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.