Cβ-selective aldol addition of D-threonine aldolase by spatial constraint of aldehyde binding

Cited 10 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorSung-Hyun Park-
dc.contributor.authorH Seo-
dc.contributor.authorJ Seok-
dc.contributor.authorHaseong Kim-
dc.contributor.authorKil Koang Kwon-
dc.contributor.authorS J Yeom-
dc.contributor.authorSeung Goo Lee-
dc.contributor.authorK J Kim-
dc.date.accessioned2021-06-03T03:30:22Z-
dc.date.available2021-06-03T03:30:22Z-
dc.date.issued2021-
dc.identifier.issn2155-5435-
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/24366-
dc.description.abstractd-Threonine aldolase (DTA) is a useful biocatalyst that reversibly converts glycine and aldehyde to β-hydroxy-α-d-amino acid. However, low activity and poor diastereoselectivity limit its applications. Here we report DTA from Filomicrobium marinum (FmDTA) that shows much higher activity and Cβ-stereoselectivity in d-threonine production compared with those of other known DTAs. We determine the FmDTA structure at a 2.2 A resolution and propose a DTA catalytic mechanism with a kernel of the Lys49 inner proton sink and metal ion in the aldol reaction cycle. The enzyme is rationally engineered to have high Cβ-stereoselectivity based on spatial constraint at the anti-specific aldehyde position in the mechanism, and the rational strategy is further applied to other DTAs for syn-production. The final FmDTAG179A/S312A variant exhibits a near-perfect 99.5% de value for d-threonine and maintains the de value above 93% even under kinetically unfavorable conditions. This study demonstrates how a detailed understanding of the reaction mechanism can be used for rational protein engineering.-
dc.publisherAmer Chem Soc-
dc.titleCβ-selective aldol addition of D-threonine aldolase by spatial constraint of aldehyde binding-
dc.title.alternativeCβ-selective aldol addition of D-threonine aldolase by spatial constraint of aldehyde binding-
dc.typeArticle-
dc.citation.titleACS Catalysis-
dc.citation.number0-
dc.citation.endPage6899-
dc.citation.startPage6892-
dc.citation.volume11-
dc.contributor.affiliatedAuthorSung-Hyun Park-
dc.contributor.affiliatedAuthorHaseong Kim-
dc.contributor.affiliatedAuthorKil Koang Kwon-
dc.contributor.affiliatedAuthorSeung Goo Lee-
dc.contributor.alternativeName박성현-
dc.contributor.alternativeName서호균-
dc.contributor.alternativeName석지혜-
dc.contributor.alternativeName김하성-
dc.contributor.alternativeName권길광-
dc.contributor.alternativeName염수진-
dc.contributor.alternativeName이승구-
dc.contributor.alternativeName김경진-
dc.identifier.bibliographicCitationACS Catalysis, vol. 11, pp. 6892-6899-
dc.identifier.doi10.1021/acscatal.1c01348-
dc.subject.keywordD-threonine aldolase-
dc.subject.keywordStereoselectivity-
dc.subject.keywordβ-hydroxy-α-amino acid-
dc.subject.keywordCatalytic mechanism-
dc.subject.keywordProtein engineering-
dc.subject.localD-threonine aldolase-
dc.subject.localStereoselectivity-
dc.subject.localstereoselectivity-
dc.subject.localβ-hydroxy-α-amino acid-
dc.subject.localCatalytic mechanism-
dc.subject.localProtein engineering-
dc.subject.localprotein engineering-
dc.subject.localProtein Engineering-
dc.description.journalClassY-
Appears in Collections:
Korea Biofoundry > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.