DC Field | Value | Language |
---|---|---|
dc.contributor.author | S W Nam | - |
dc.contributor.author | J P Chae | - |
dc.contributor.author | Y H Kwon | - |
dc.contributor.author | Mi-Young Son | - |
dc.contributor.author | J S Bae | - |
dc.contributor.author | M J Park | - |
dc.date.accessioned | 2021-07-08T03:30:21Z | - |
dc.date.available | 2021-07-08T03:30:21Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 0006-291X | - |
dc.identifier.uri | https://oak.kribb.re.kr/handle/201005/24469 | - |
dc.description.abstract | Xenopus laevis is highly suitable as a toxicology animal model owing to its advantages in embryogenesis research. For toxicological studies, a large number of embryos must be handled simultaneously because they very rapidly develop into the target stages within a short period of time. To efficiently handle the embryos, a convenient embryo housing device is essential for fast and reliable assessment and statistical evaluation of malformation caused by toxicants. Here, we suggest 3D fabrication of single-egg trapping devices in which Xenopus eggs are fertilized in vitro, and the embryos are cultured. We used manual pipetting to insert the Xenopus eggs inside the trapping sites of the chip. By introducing a liquid circulating system, we connected a sperm-mixed solution with the chip to induce in vitro fertilization of the eggs. After the eggs were fertilized, we observed embryo development involving the formation of egg cleavage, blastula, gastrula, and tadpole. After the tadpoles grew inside the chip, we saved their lives by enabling their escape from the chip through reverse flow of the culture medium. The Xenopus chip can serve as an incubator to induce fertilization and monitor normal and abnormal development of the Xenopus from egg to tadpole. | - |
dc.publisher | Elsevier | - |
dc.title | Xenopus chip for single-egg trapping, in vitro fertilization, development, and tadpole escape | - |
dc.title.alternative | Xenopus chip for single-egg trapping, in vitro fertilization, development, and tadpole escape | - |
dc.type | Article | - |
dc.citation.title | Biochemical and Biophysical Research Communications | - |
dc.citation.number | 0 | - |
dc.citation.endPage | 34 | - |
dc.citation.startPage | 29 | - |
dc.citation.volume | 569 | - |
dc.contributor.affiliatedAuthor | Mi-Young Son | - |
dc.contributor.alternativeName | 남성욱 | - |
dc.contributor.alternativeName | 채정필 | - |
dc.contributor.alternativeName | 권용환 | - |
dc.contributor.alternativeName | 손미영 | - |
dc.contributor.alternativeName | 배재성 | - |
dc.contributor.alternativeName | 박매자 | - |
dc.identifier.bibliographicCitation | Biochemical and Biophysical Research Communications, vol. 569, pp. 29-34 | - |
dc.identifier.doi | 10.1016/j.bbrc.2021.06.049 | - |
dc.subject.keyword | Xenopus laevis | - |
dc.subject.keyword | Embryogenesis | - |
dc.subject.keyword | In vitro fertilization | - |
dc.subject.keyword | Biochip | - |
dc.subject.keyword | Tadpole trapping | - |
dc.subject.local | Xenopus laevis | - |
dc.subject.local | Embryogenesis | - |
dc.subject.local | embryogenesis | - |
dc.subject.local | In vitro fertilization | - |
dc.subject.local | in vitro fertilisation | - |
dc.subject.local | in vitro fertilization | - |
dc.subject.local | Biochip | - |
dc.subject.local | biochip | - |
dc.subject.local | Tadpole trapping | - |
dc.description.journalClass | Y | - |
There are no files associated with this item.
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.