CXCL5 secreted from macrophages during cold exposure mediates white adipose tissue browning

Cited 17 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorD Lee-
dc.contributor.authorD W Kim-
dc.contributor.authorS Yoon-
dc.contributor.authorA R Nam-
dc.contributor.authorK H Lee-
dc.contributor.authorKi Hoan Nam-
dc.contributor.authorSang Mi Cho-
dc.contributor.authorYeodae Yoon-
dc.contributor.authorJ Y Cho-
dc.date.accessioned2021-10-12T15:31:09Z-
dc.date.available2021-10-12T15:31:09Z-
dc.date.issued2021-
dc.identifier.issn0022-2275-
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/24868-
dc.description.abstractAdipose tissue affects metabolic-related diseases because it consists of various cell types involved in fat metabolism and adipokine release. CXC ligand 5 (CXCL5) is a member of the CXC chemokine family and is highly expressed by macrophages in white adipose tissue (WAT). In this study, we generated and investigated the function of CXCL5 in knockout (KO) mice using CRISPR/Cas9. The male KO mice did not show significant phenotype differences in normal conditions. However, proteomic analysis revealed that many proteins involved in fatty acid beta-oxidation and mitochondrial localization were enriched in the inguinal WAT (iWAT) of Cxcl5 KO mice. Cxcl5 KO mice also showed decreased protein and transcript expression of genes associated with thermogenesis, including uncoupling protein 1 (UCP1), a well-known thermogenic gene, and increased expression of genes associated with inflammation. The increase in UCP1 expression in cold conditions was significantly retarded in Cxcl5 KO mice. Finally, we found that CXCL5 treatment increased the expression of transcription factors that mediate Ucp1 expression and Ucp1 itself. Collectively, our data show that Ucp1 expression is induced in adipocytes by CXCL5, which is secreted upon β-adrenergic stimulation by cold stimulation in M1 macrophages. Our data indicate that CXCL5 plays a crucial role in regulating energy metabolism, particularly upon cold exposure. These results strongly suggest that targeting CXCL5 could be a potential therapeutic strategy for people suffering from disorders affecting energy metabolism.-
dc.publisherAmer Soc Biochemistry Molecular Biology Inc-
dc.titleCXCL5 secreted from macrophages during cold exposure mediates white adipose tissue browning-
dc.title.alternativeCXCL5 secreted from macrophages during cold exposure mediates white adipose tissue browning-
dc.typeArticle-
dc.citation.titleJournal of Lipid Research-
dc.citation.number0-
dc.citation.endPage100117-
dc.citation.startPage100117-
dc.citation.volume62-
dc.contributor.affiliatedAuthorKi Hoan Nam-
dc.contributor.affiliatedAuthorSang Mi Cho-
dc.contributor.affiliatedAuthorYeodae Yoon-
dc.contributor.alternativeName이다빈-
dc.contributor.alternativeName김동욱-
dc.contributor.alternativeName윤상혁-
dc.contributor.alternativeName남아름-
dc.contributor.alternativeName이강훈-
dc.contributor.alternativeName남기환-
dc.contributor.alternativeName조상미-
dc.contributor.alternativeName윤여대-
dc.contributor.alternativeName조제열-
dc.identifier.bibliographicCitationJournal of Lipid Research, vol. 62, pp. 100117-100117-
dc.identifier.doi10.1016/j.jlr.2021.100117-
dc.subject.keywordiWAT-
dc.subject.keywordKO mouse-
dc.subject.keywordUCP1-
dc.subject.keywordM1 macrophage-
dc.subject.keywordBeta-adrenergic signaling-
dc.subject.keywordM1 macrophages-
dc.subject.keywordCold stress-
dc.subject.keywordThermogenesis-
dc.subject.keywordProteomics-
dc.subject.localiWAT-
dc.subject.localKO mice-
dc.subject.localKO mouse-
dc.subject.localUCP1-
dc.subject.localUCP-1-
dc.subject.localM1 macrophage-
dc.subject.localM1 macrophages-
dc.subject.localBeta-adrenergic signaling-
dc.subject.localM1 macrophage-
dc.subject.localM1 macrophages-
dc.subject.localCold stress-
dc.subject.localthermogenesis-
dc.subject.localThermogenesis-
dc.subject.localProteomic-
dc.subject.localProteomics-
dc.description.journalClassY-
Appears in Collections:
Ochang Branch Institute > Division of National Bio-Infrastructure > Laboratory Animal Resource & Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.