Leukotriene B4 receptor-2 contributes to KRAS-driven lung tumor formation by promoting interleukin-6-mediated inflammation

Cited 10 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorJ H Jang-
dc.contributor.authorD Park-
dc.contributor.authorG S Park-
dc.contributor.authorD W Kkwak-
dc.contributor.authorJ Park-
dc.contributor.authorDae Yeul Yu-
dc.contributor.authorH J You-
dc.contributor.authorJ H Kim-
dc.date.accessioned2021-11-08T15:30:25Z-
dc.date.available2021-11-08T15:30:25Z-
dc.date.issued2021-
dc.identifier.issn1226-3613-
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/24981-
dc.description.abstractAlthough lung cancer is the leading cause of cancer-related deaths worldwide and KRAS is the most frequently mutated oncogene in lung cancer cases, the mechanism by which KRAS mutation drives lung cancer has not been fully elucidated. Here, we report that the expression levels of leukotriene B4 receptor-2 (BLT2) and its ligand-producing enzymes (5-LOX, 12-LOX) were highly increased by mutant KRAS and that BLT2 or 5-/12-LOX blockade attenuated KRAS-driven lung cell proliferation and production of interleukin-6 (IL-6), a principal proinflammatory mediator of lung cancer development. Next, we explored the roles of BLT2 and 5-/12-LOX in transgenic mice with lung-specific expression of mutant KRAS (KrasG12D) and observed that BLT2 or 5-/12-LOX inhibition decreased IL-6 production and tumor formation. To further determine whether BLT2 is involved in KRAS-driven lung tumor formation, we established a KrasG12D/BLT2-KO double-mutant mouse model. In the double-mutant mice, we observed significantly suppressed IL-6 production and lung tumor formation. Additionally, we observed high BLT2 expression in tissue samples from patients with KrasG12D-expressing lung adenocarcinoma, supporting the contributory role of BLT2 in KRAS-driven human lung cancer. Collectively, our results suggest that BLT2 is a potential contributor to KRAS-driven lung cancer and identify an attractive therapeutic target for KRAS-driven lung cancer.-
dc.publisherSpringer-Nature Pub Group-
dc.titleLeukotriene B4 receptor-2 contributes to KRAS-driven lung tumor formation by promoting interleukin-6-mediated inflammation-
dc.title.alternativeLeukotriene B4 receptor-2 contributes to KRAS-driven lung tumor formation by promoting interleukin-6-mediated inflammation-
dc.typeArticle-
dc.citation.titleExperimental and Molecular Medicine-
dc.citation.number10-
dc.citation.endPage1568-
dc.citation.startPage1559-
dc.citation.volume53-
dc.contributor.affiliatedAuthorDae Yeul Yu-
dc.contributor.alternativeName장재현-
dc.contributor.alternativeName박동환-
dc.contributor.alternativeName박근수-
dc.contributor.alternativeName곽동욱-
dc.contributor.alternativeName박재인-
dc.contributor.alternativeName유대열-
dc.contributor.alternativeName유혜진-
dc.contributor.alternativeName김재홍-
dc.identifier.bibliographicCitationExperimental and Molecular Medicine, vol. 53, no. 10, pp. 1559-1568-
dc.identifier.doi10.1038/s12276-021-00682-z-
dc.description.journalClassY-
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.