Cited 7 time in
- Title
- SARS-CoV-2 peptides bind to NKG2D and increase NK cell activity
- Author(s)
- Hanna Kim; Byun Jae Eun; Suk Ran Yoon; H Koohy; Haiyoung Jung; In Pyo Choi
- Bibliographic Citation
- Cellular Immunology, vol. 371, pp. 104454-104454
- Publication Year
- 2022
- Abstract
- Immune dysregulation is commonly observed in patients with coronavirus disease 2019 (COVID-19). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces severe lung inflammation and innate immune cell dysregulation. However, the precise interaction between SARS-CoV-2 and the innate immune system is currently unknown. To understand the interaction between SARS-CoV-2 and natural killer (NK) cells, several SARS-CoV-2 S protein peptides capable of binding to the NKG2D receptor were screened by in silico analysis. Among them, two peptides, cov1 and cov2, bound to NK cells and NKG2D receptors. These cov peptides increased NK cytotoxicity toward lung cancer cells, stimulated interferon gamma (IFN-γ) production by NK cells, and likely mediated these responses through the phosphorylation of Vav1, a key downstream-signaling molecule of NKG2D and NK activation genes. The direct interaction between SARS-CoV-2 and NK cells is a novel finding, and modulation of this interaction has potential clinical application as a therapeutic target for COVID-19.
- Keyword
- SARS-Cov-2NKNKG2DPeptideCytotoxicityIFN-γ
- ISSN
- 0008-8749
- Publisher
- Elsevier
- DOI
- http://dx.doi.org/10.1016/j.cellimm.2021.104454
- Type
- Article
- Appears in Collections:
- Aging Convergence Research Center > 1. Journal Articles
Division of Biomedical Research > Immunotherapy Research Center > 1. Journal Articles
- Files in This Item:
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.