Dimeric architecture of maltodextrin glucosidase (MalZ) provides insights into the substrate recognition and hydrolysis mechanism

Cited 3 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorWoo-Chan Ahn-
dc.contributor.authorYan An-
dc.contributor.authorK M Song-
dc.contributor.authorKwang Hyun Park-
dc.contributor.authorSujin Lee-
dc.contributor.authorB H Oh-
dc.contributor.authorJ T Park-
dc.contributor.authorEuijeon Woo-
dc.date.accessioned2021-11-24T15:30:51Z-
dc.date.available2021-11-24T15:30:51Z-
dc.date.issued2022-
dc.identifier.issn0006-291X-
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/25053-
dc.description.abstractMaltodextrin glucosidase (MalZ) is a key enzyme in the maltose utilization pathway in Escherichia coli that liberates glucose from the reducing end of the short malto-oligosaccharides. Unlike other enzymes in the GH13_21 subfamily, the hydrolytic activity of MalZ is limited to maltodextrin rather than long starch substrates, forming various transglycosylation products in α-1,3, α-1,4 or α-1,6 linkages. The mechanism for the substrate binding and hydrolysis of this enzyme is not well understood yet. Here, we present the dimeric crystal structure of MalZ, with the N-domain generating a unique substrate binding groove. The N-domain bears CBM34 architecture and forms a part of the active site in the catalytic domain of the adjacent molecule. The groove found between the N-domain and catalytic domain from the adjacent molecule, shapes active sites suitable for short malto-oligosaccharides, but hinders long stretches of oligosaccharides. The conserved residue of E44 protrudes at subsite +2, elucidating the hydrolysis pattern of the substrate by the glucose unit from the reducing end. The structural analysis provides a molecular basis for the substrate specificity and the enzymatic property, and has potential industrial application for protein engineering.-
dc.publisherElsevier-
dc.titleDimeric architecture of maltodextrin glucosidase (MalZ) provides insights into the substrate recognition and hydrolysis mechanism-
dc.title.alternativeDimeric architecture of maltodextrin glucosidase (MalZ) provides insights into the substrate recognition and hydrolysis mechanism-
dc.typeArticle-
dc.citation.titleBiochemical and Biophysical Research Communications-
dc.citation.number0-
dc.citation.endPage54-
dc.citation.startPage49-
dc.citation.volume586-
dc.contributor.affiliatedAuthorWoo-Chan Ahn-
dc.contributor.affiliatedAuthorYan An-
dc.contributor.affiliatedAuthorKwang Hyun Park-
dc.contributor.affiliatedAuthorSujin Lee-
dc.contributor.affiliatedAuthorEuijeon Woo-
dc.contributor.alternativeName안우찬-
dc.contributor.alternativeName안연-
dc.contributor.alternativeName송경모-
dc.contributor.alternativeName박광현-
dc.contributor.alternativeName이수진-
dc.contributor.alternativeName오병하-
dc.contributor.alternativeName박종태-
dc.contributor.alternativeName우의전-
dc.identifier.bibliographicCitationBiochemical and Biophysical Research Communications, vol. 586, pp. 49-54-
dc.identifier.doi10.1016/j.bbrc.2021.11.070-
dc.subject.keywordMaltodextrin glucosidase-
dc.subject.keywordMalZ-
dc.subject.keywordDimerization-
dc.subject.keywordCrystal structure-
dc.subject.localMaltodextrin glucosidase-
dc.subject.localMalZ-
dc.subject.localDimerization-
dc.subject.localcrystal structure-
dc.subject.localCrystal structure-
dc.description.journalClassY-
Appears in Collections:
Critical Diseases Diagnostics Convergence Research Center > 1. Journal Articles
Synthetic Biology and Bioengineering Research Institute > Genome Editing Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.