Regioselectivity of an arachidonate 9S-lipoxygenase from Sphingopyxis macrogoltabida that biosynthesizes 9S,15S- and 11S,17S-dihydroxy fatty acids from C20 and C22 polyunsaturated fatty acids

Cited 17 time in scopus
Metadata Downloads
Title
Regioselectivity of an arachidonate 9S-lipoxygenase from Sphingopyxis macrogoltabida that biosynthesizes 9S,15S- and 11S,17S-dihydroxy fatty acids from C20 and C22 polyunsaturated fatty acids
Author(s)
S E Kim; J Lee; Jung Ung An; T H Kim; C W Oh; Y J Ko; M Krishnan; J Choi; D Y Yoon; Y Kim; D K Oh
Bibliographic Citation
Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, vol. 1867, no. 3, pp. 159091-159091
Publication Year
2022
Abstract
Lipoxygenases (LOXs) biosynthesize lipid mediators (LMs) as human signaling molecules. Among LMs, specialized pro-resolving mediators (SPMs) are involved in the resolution of inflammation and infection in humans. Here, the putative LOX from the bacterium Sphingopyxis macrogoltabida was identified as arachidonate 9S-LOX. The enzyme catalyzed oxygenation at the n-12 position of C20 and C22 polyunsaturated fatty acids (PUFAs) to form 9S- and 11S-hydroperoxy fatty acids, which were reduced to 9S- and 11S-hydroxy fatty acids (HFAs) by cysteine, respectively, and it catalyzed again oxygenation at the n-6 position of HFAs to form 9S,15S- and 11S,17S-DiHFAs, respectively. The regioselective residues of 9S-LOX were determined as lle395 and Val569 based on the amino acid alignment and homology models. The regioselectivity of the I395F variant was changed from the n-12 position on C20 PUFA to the n-6 position to form 15S-HFAs. This may be due to the reduction of the substrate-binding pocket by replacing the smaller Ile with a larger Phe. The V569W variant had a significantly lower second-oxygenating activity compared to wild-type 9S-LOX because the insertion of the hydroxyl group of the first-oxygenating products at the active site was seemed to be hindered by substituting a larger Trp for a smaller Val. The compounds, 11S-hydroxydocosapentaenoic acid, 9S,15S-dihydroxyeicosatetraenoic acid, 9S,15S-dihydroxyeicosapentaenoic acid, 11S,17S-hydroxydocosapentaenoic acid, and 11S,17S-dihydroxydocosahexaenoic acid, were newly identified by polarimeter, LC-MS/MS, and NMR. 11S,17S-DiHFAs as SPM isomers biosynthesized from C22 PUFAs showed anti-inflammatory activities in mouse and human cells. Our study contributes may stimulate physiological studies by providing new LMs.
Keyword
LipoxygenaseRegioselectivityLipid mediatorsSpecialized pro-resolving mediatorsDihydroxy fatty acidsSphingopyxis macrogoltabida
ISSN
1388-1981
Publisher
Elsevier
Full Text Link
http://dx.doi.org/10.1016/j.bbalip.2021.159091
Type
Article
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.