Detection of melanogenesis and anti-apoptosis-associated melanoma factors: array CGH and PPI mapping integrating study

Cited 3 time in scopus
Metadata Downloads
Title
Detection of melanogenesis and anti-apoptosis-associated melanoma factors: array CGH and PPI mapping integrating study
Author(s)
S J Yin; G Y Qian; J M Yang; Jinhyuk Lee; Y D Park
Bibliographic Citation
Protein and Peptide Letters, vol. 28, no. 12, pp. 1408-1424
Publication Year
2021
Abstract
Background: We investigated melanogenesis- and anti-apoptosis-related melanoma factors in melanoma cells (TXM1, TXM18, A375P, and A375SM). Objective: To find melanoma associated hub factor, high-throughput screening-based techniques integrating with bioinformatics were investigated. Methods: Array CGH analysis was conducted with a commercial system. Total genomic DNAs prepared individually from each cell line with control DNA were properly labeled with Cy3-dCTP and Cy5-dCTP and hybridizations and subsequently performed data treatment by the log2 green (G; test) to red (R; reference) fluorescence ratios (G/R). Gain or loss of copy number was judged by spots with log2-transformed ratios. PPI mapping analysis of detected candidate genes based on the array CGH results was conducted using the human interactome in the STRING database. Energy minimization and a short Molecular Dynamics (MD) simulation using the implicit solvation model in CHARMM were performed to analyze the interacting residues between YWHAZ and YWHAB. Results: Three genes (BMP-4, BFGF, LEF-1) known to be involved in melanogenesis were found to lose chromosomal copy numbers, and Chr. 6q23.3 was lost in all tested cell lines. Ten hub genes (CTNNB1, PEX13, PEX14, PEX5, IFNG, EXOSC3, EXOSC1, EXOSC8, UBC, and PEX10) were predicted to be functional interaction factors in the network of the 6q23.3 locus. The apoptosis-associated genes E2F1, p50, BCL2L1, and BIRC7 gained, and FGF2 lost chromosomal copy numbers in the tested melanoma cell lines. YWHAB, which gained chromosomal copy numbers, was predicted to be the most important hub protein in melanoma cells. Molecular dynamics simulations for binding YWHAB and YWHAZ were conducted, and the complex was predicted to be energetically and structurally stable through its 3 hydrogen-bond patterns. The number of interacting residues is 27. Conclusion: Our study compares genome-wide screening interactomics predictions for melanoma factors and offers new information for understanding melanogenesis- and anti-apoptosis-associated mechanisms in melanoma. Especially, YWHAB was newly detected as a core factor in melanoma cells.
Keyword
MelanomaArray CGHPPI mappingMolecular dynamics simulationYWHABMelanogenesis
ISSN
0929-8665
Publisher
Bentham Science Publ Ltd
Full Text Link
http://dx.doi.org/10.2174/0929866528666211105112927
Type
Article
Appears in Collections:
Synthetic Biology and Bioengineering Research Institute > Genome Editing Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.