Nanoencapsulated phase-change materials: versatile and air-tolerant platforms for triplet-triplet annihilation upconversion

Cited 20 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorHaklae Lee-
dc.contributor.authorM S Lee-
dc.contributor.authorM Uji-
dc.contributor.authorN Harada-
dc.contributor.authorJ M Park-
dc.contributor.authorJiyeon Lee-
dc.contributor.authorSung Eun Seo-
dc.contributor.authorChul Soon Park-
dc.contributor.authorJinyeong Kim-
dc.contributor.authorSeon Joo Park-
dc.contributor.authorS H Bhang-
dc.contributor.authorN Yanai-
dc.contributor.authorN Kimizuka-
dc.contributor.authorOh Seok Kwon-
dc.contributor.authorJ H Kim-
dc.date.accessioned2022-02-03T15:30:27Z-
dc.date.available2022-02-03T15:30:27Z-
dc.date.issued2022-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/25359-
dc.description.abstractEfficient and long-term stable triplet-triplet annihilation upconversion (TTA-UC) can be achieved by effectively protecting the excited organic triplet ensembles from photoinduced oxygen quenching, and discovery of a new material platform that promotes TTA-UC in ambient conditions is of paramount importance for practical applications. In this study, we present the first demonstration of an organic nonparaffin phase-change material (PCM) as an air-tolerant medium for TTA-UC with a unique solid-liquid phase transition in response to temperature variation. For the proposed concept, 2,4-hexadien-1-ol is used and extensively characterized with several key features, including good solvation capacity, mild melting point (30.5 °C), and exclusive antioxidant property, enabling a high-efficiency, low-threshold, and photostable TTA-UC system without energy-intensive degassing processes. In-depth characterization reveals that the triplet diffusion among the transient species, i.e., 3sensitizer* and 3acceptor*, is efficient and well protected from oxygen quenching in both aerated liquid- and solid-phase 2,4-hexadien-1-ol. We also propose a new strategy for the nanoencapsulation of PCM by employing hollow mesoporous silica nanoparticles as vehicles. This scheme is applicable to both aqueous- and solid-phase TTA-UC systems as well as suitable for various applications, such as thermal energy storage and smart drug delivery.-
dc.publisherAmer Chem Soc-
dc.titleNanoencapsulated phase-change materials: versatile and air-tolerant platforms for triplet-triplet annihilation upconversion-
dc.title.alternativeNanoencapsulated phase-change materials: versatile and air-tolerant platforms for triplet-triplet annihilation upconversion-
dc.typeArticle-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.number3-
dc.citation.endPage4143-
dc.citation.startPage4132-
dc.citation.volume14-
dc.contributor.affiliatedAuthorHaklae Lee-
dc.contributor.affiliatedAuthorJiyeon Lee-
dc.contributor.affiliatedAuthorSung Eun Seo-
dc.contributor.affiliatedAuthorChul Soon Park-
dc.contributor.affiliatedAuthorJinyeong Kim-
dc.contributor.affiliatedAuthorSeon Joo Park-
dc.contributor.affiliatedAuthorOh Seok Kwon-
dc.contributor.alternativeName이학래-
dc.contributor.alternativeName이명수-
dc.contributor.alternativeNameUji-
dc.contributor.alternativeNameHarada-
dc.contributor.alternativeName박정민-
dc.contributor.alternativeName이지연-
dc.contributor.alternativeName서성은-
dc.contributor.alternativeName박철순-
dc.contributor.alternativeName김진영-
dc.contributor.alternativeName박선주-
dc.contributor.alternativeName방석호-
dc.contributor.alternativeNameYanai-
dc.contributor.alternativeNameKimizuka-
dc.contributor.alternativeName권오석-
dc.contributor.alternativeName김재혁-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, vol. 14, no. 3, pp. 4132-4143-
dc.identifier.doi10.1021/acsami.1c21080-
dc.subject.keywordUpconversion-
dc.subject.keywordTriplet?triplet annihilation-
dc.subject.keywordPhase-change materials-
dc.subject.keywordHollow mesoporous silica-
dc.subject.keywordPostencapsulation-
dc.subject.localUpconversion-
dc.subject.localup-covnersion-
dc.subject.localupconversion-
dc.subject.localup-conversion-
dc.subject.localTriplet?triplet annihilation-
dc.subject.localPhase-change materials-
dc.subject.localHollow mesoporous silica-
dc.subject.localPostencapsulation-
dc.description.journalClassY-
Appears in Collections:
Division of Research on National Challenges > Infectious Disease Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.