New phenalenone derivatives from the Hawaiian volcanic soil-associated fungus Penicillium herquei FT729 and their inhibitory effects on indoleamine 2,3-dioxygenase 1 (IDO1)

Cited 0 time in scopus
Metadata Downloads
Title
New phenalenone derivatives from the Hawaiian volcanic soil-associated fungus Penicillium herquei FT729 and their inhibitory effects on indoleamine 2,3-dioxygenase 1 (IDO1)
Author(s)
J S Yu; S Y Jeong; C Li; Taehoon Oh; Mincheol Kwon; Jong Seog AhnSung-Kyun Ko; Y J Ko; S Cao; K H Kim
Bibliographic Citation
Archives of Pharmacal Research, vol. 45, no. 2, pp. 105-113
Publication Year
2022
Abstract
Phenalenone derivatives sourced from fungi are polyketides that have attracted significant interest because of their diverse chemical structures and potential bioactivities. As part of our ongoing quest to discover novel natural products with biological properties from diverse natural resources, three unreported phenalenone derivatives (1-3), named ent-12-methoxyisoherqueinone (1), (-)-scleroamide (2), and (+)-scleroamide (3), together with four known phenalenone derivatives, ent-atrovenetinone (4), isoherqueinone (5), herqueinone (6), and ent-peniciherquinone (7) were isolated from the Hawaiian soil fungus Penicillium herquei FT729, collected on the Big Island, Hawaii. Compounds 2 and 3 were enantiomers, which were separated using a chiral-phase HPLC column, which provided optically pure compounds 2 and 3. The structures of the novel compounds were established by extensive spectroscopic analyses, including 1D and 2D NMR and high-resolution ESIMS. Their absolute configurations were determined using quantum chemical electronic circular dichroism (ECD) calculations. The inhibitory activity of the isolated compounds (1-7) against indoleamine 2,3-dioxygenase 1 (IDO1) was assessed. Compounds 1, 5-7 inhibited IDO1, with IC50 values of 32.59, 36.86, 19.05, and 24.18 μM, respectively. These findings demonstrated that the phenalenone derivatives 1 and 5-7, as IDO1 inhibitors, are promising anticancer immunotherapeutic agents.
Keyword
Penicillium herquei FT729Phenalenone derivativeStructural elucidationECD calculationIndoleamine 2,3-dioxygenase 1
ISSN
0253-6269
Publisher
Pharmaceutical Soc Korea
DOI
http://dx.doi.org/10.1007/s12272-022-01372-8
Type
Article
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.