Synthetic 3'-UTR valves for optimal metabolic flux control in Escherichia coli

Cited 10 time in scopus
Metadata Downloads
Title
Synthetic 3'-UTR valves for optimal metabolic flux control in Escherichia coli
Author(s)
D Choe; K Kim; M Kang; Seung Goo Lee; S Cho; B Palsson; B K Cho
Bibliographic Citation
Nucleic Acids Research, vol. 50, no. 7, pp. 4171-4186
Publication Year
2022
Abstract
As the design of genetic circuitry for synthetic biology becomes more sophisticated, diverse regulatory bioparts are required. Despite their importance, well-characterized 3'-untranslated region (3'-UTR) bioparts are limited. Thus, transcript 3'-ends require further investigation to understand the underlying regulatory role and applications of the 3'-UTR. Here, we revisited the use of Term-Seq in the Escherichia coli strain K-12 MG1655 to enhance our understanding of 3'-UTR regulatory functions and to provide a diverse collection of tunable 3'-UTR bioparts with a wide termination strength range. Comprehensive analysis of 1,629 transcript 3'-end positions revealed multiple 3'-termini classes generated through transcription termination and RNA processing. The examination of individual Rho-independent terminators revealed a reduction in downstream gene expression over a wide range, which led to the design of novel synthetic metabolic valves that control metabolic fluxes in branched pathways. These synthetic metabolic valves determine the optimal balance of heterologous pathways for maximum target biochemical productivity. The regulatory strategy using 3'-UTR bioparts is advantageous over promoter- or 5'-UTR-based transcriptional control as it modulates gene expression at transcription levels without trans-acting element requirements (e.g. transcription factors). Our results provide a foundational platform for 3'-UTR engineering in synthetic biology applications.
ISSN
0305-1048
Publisher
Oxford Univ Press
Full Text Link
http://dx.doi.org/10.1093/nar/gkac206
Type
Article
Appears in Collections:
Korea Biofoundry > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.