Barrier protective functions of hederacolchiside-E against HMGB1-mediated septic responses

Cited 7 time in scopus
Metadata Downloads
Title
Barrier protective functions of hederacolchiside-E against HMGB1-mediated septic responses
Author(s)
Wonhwa Lee; H J Choi; H Sim; S Choo; G Y Song; J S Bae
Bibliographic Citation
Pharmacological Research, vol. 163, pp. 105318-105318
Publication Year
2021
Abstract
The role of high mobility group box 1 (HMGB1) has been recognized as important, and suppression of HMGB1 release and restoration of vascular barrier integrity are regarded as potentially promising therapeutic strategies against sepsis. Hederacolchiside-E (HCE), namely 3-O-{α-L-rhamnopyranosyl (1→2)-[β-D-glucopyranosyl(1→4)]-α-L-arabinopyranosyl}-28-O-[α-L-rhamnopyranosyl (1→4)-β-D-glucopyranosyl(1→6)-β-D-glucopyranosyl ester, is a bidesmosidic oleanane saponin first isolated in 1970 from the leaves of Hedera colchica. We tested our hypothesis that HCE inhibits HMGB1-induced vascular hyperpermeability and thereby increases the survival of septic mouse model from suppression of HMGB1 release upon lipopolysaccharide (LPS)-stimulation. In LPS-activated human endothelial cells and a sepsis mouse model by cecal ligation and puncture (CLP), antiseptic activity of HCE was investigated from suppression of vascular permeability, pro-inflammatory proteins, and tissue injury markers. Post-treatment of HCE significantly suppressed HMGB1 release both in LPS-activated human endothelial cells and the CLP-induced sepsis mouse model. HCE inhibited hyperpermeability and alleviated HMGB1-mediated vascular disruptions, and reduced sepsis-related mortality and tissue injury in mice. Our results suggest that reduction of HMGB1 release and septic mortality by HCE may be useful for the drug candidate of sepsis, indicating a possibility of successful repositioning of HCE.
Keyword
Hederacolchiside-EHMGB1EndotheliumSepsis
ISSN
1043-6618
Publisher
Elsevier
Full Text Link
http://dx.doi.org/10.1016/j.phrs.2020.105318
Type
Article
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.