Isolation and molecular characterization of Bacillus thuringiensis subsp. kurstaki toxic to lepidopteran pests, Spodoptera spp. and Plutella xylostella

Cited 0 time in scopus
Metadata Downloads
Title
Isolation and molecular characterization of Bacillus thuringiensis subsp. kurstaki toxic to lepidopteran pests, Spodoptera spp. and Plutella xylostella
Author(s)
M G Park; J Y Choi; Jong Hoon Kim; D H Park; M Wang; H J Kim; S H Kim; H Y Lee; Y H Je
Bibliographic Citation
Pest Management Science, vol. 78, no. 7, pp. 2976-2984
Publication Year
2022
Abstract
Background: Bacillus thuringiensis (Bt) has been widely used as a biological control agent for lepidopteran pests. However, resistance to Bt is a major concern associated with Spodoptera spp. (Noctuidae) and Plutella xylostella (Plutellidae). For efficient control of Noctuidae and Plutellidae, novel Bt strains which have high toxicity and a broad host range are needed. Results: To develop novel Bt strains as used for bio-insecticides, the Bt IMBL-B9 with high toxicity against Spodoptera exigua, Spodoptera frugiperda and P. xylostella was isolated and characterized. The Bt kurstaki IMBL-B9 strain produced bipyramidal and cuboidal crystals consisting of cry toxins with molecular weights of 130 and 65 kDa, respectively. This strain harbors eight crystal protein genes in total, including cry1Ea and one vegetative insecticidal protein gene. The median lethal concentration (LC50 ) values of IMBL-B9 against S. exigua and S. frugiperda were 21.8- and 19.3-fold lower than those of the Bt kusrstaki strain, and 5.6- and 4.9-fold lower than those of Bt aizawai strain, respectively. To evaluate the insecticidal activity of Cry proteins from IMBL-B9, cry gene-sourced recombinant Bt strains were constructed. These strains have insecticidal activity and synergic action against lepidopteran pests. Conclusion: In this study, a novel Bt kurstaki IMBL-B9 strain was isolated and this could be useful for the development of new bio-insecticide or cry gene-based recombinant products as an alternative solution against lepidopterans, including Noctuidae and Plutellidae. ⓒ 2022 Society of Chemical Industry.
Keyword
Bacillus thuringiensisInsecticidal proteinsSpodoptera exiguaSpodoptera frugiperdaWhole-genome sequencing
ISSN
1526-498X
Publisher
Wiley
DOI
http://dx.doi.org/10.1002/ps.6922
Type
Article
Appears in Collections:
Division of Biomedical Research > Microbiome Convergence Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.