Highly adsorptive Au-TiO2 nanocomposites for the SERS face mask allow the machine-learning-based quantitative assay of SARS-CoV-2 in artificial breath aerosols

Cited 32 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorC S H Hwang-
dc.contributor.authorS Lee-
dc.contributor.authorS Lee-
dc.contributor.authorH Kim-
dc.contributor.authorTaejoon Kang-
dc.contributor.authorD Lee-
dc.contributor.authorK H Jeong-
dc.date.accessioned2022-12-19T16:32:32Z-
dc.date.available2022-12-19T16:32:32Z-
dc.date.issued2022-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/30739-
dc.description.abstractHuman respiratory aerosols contain diverse potential biomarkers for early disease diagnosis. Here, we report the direct and label-free detection of SARS-CoV-2 in respiratory aerosols using a highly adsorptive Au-TiO2 nanocomposite SERS face mask and an ablation-assisted autoencoder. The Au-TiO2 SERS face mask continuously preconcentrates and efficiently captures the oronasal aerosols, which substantially enhances the SERS signal intensities by 47% compared to simple Au nanoislands. The ultrasensitive Au-TiO2 nanocomposites also demonstrate the successful detection of SARS-CoV-2 spike proteins in artificial respiratory aerosols at a 100 pM concentration level. The deep learning-based autoencoder, followed by the partial ablation of nondiscriminant SERS features of spike proteins, allows a quantitative assay of the 101-104 pfu/mL SARS-CoV-2 lysates (comparable to 19-29 PCR cyclic threshold from COVID-19 patients) in aerosols with an accuracy of over 98%. The Au-TiO2 SERS face mask provides a platform for breath biopsy for the detection of various biomarkers in respiratory aerosols.-
dc.publisherAmer Chem Soc-
dc.titleHighly adsorptive Au-TiO2 nanocomposites for the SERS face mask allow the machine-learning-based quantitative assay of SARS-CoV-2 in artificial breath aerosols-
dc.title.alternativeHighly adsorptive Au-TiO2 nanocomposites for the SERS face mask allow the machine-learning-based quantitative assay of SARS-CoV-2 in artificial breath aerosols-
dc.typeArticle-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.number49-
dc.citation.endPage54557-
dc.citation.startPage54550-
dc.citation.volume14-
dc.contributor.affiliatedAuthorTaejoon Kang-
dc.contributor.alternativeName황Charles-
dc.contributor.alternativeName이상연-
dc.contributor.alternativeName이세진-
dc.contributor.alternativeName김한진-
dc.contributor.alternativeName강태준-
dc.contributor.alternativeName이도헌-
dc.contributor.alternativeName정기훈-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, vol. 14, no. 49, pp. 54550-54557-
dc.identifier.doi10.1021/acsami.2c16446-
dc.subject.keywordSARS-CoV-2-
dc.subject.keywordSurface-enhanced Raman spectroscopy-
dc.subject.keywordBreath biopsy-
dc.subject.keywordMachine-learning, plasmonics-
dc.subject.keywordNanocomposite-
dc.subject.localSARS-CoV-2-
dc.subject.localSARS-Cov-2-
dc.subject.localSurface-enhanced Raman spectroscopy-
dc.subject.localSurface enhanced Raman spectroscopy-
dc.subject.localBreath biopsy-
dc.subject.localMachine-learning, plasmonics-
dc.subject.localNanocomposite-
dc.subject.localNanocomposites-
dc.subject.localnanocomposite-
dc.description.journalClassY-
Appears in Collections:
Division of Research on National Challenges > Bionanotechnology Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.