DC Field | Value | Language |
---|---|---|
dc.contributor.author | C S H Hwang | - |
dc.contributor.author | S Lee | - |
dc.contributor.author | S Lee | - |
dc.contributor.author | H Kim | - |
dc.contributor.author | Taejoon Kang | - |
dc.contributor.author | D Lee | - |
dc.contributor.author | K H Jeong | - |
dc.date.accessioned | 2022-12-19T16:32:32Z | - |
dc.date.available | 2022-12-19T16:32:32Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 1944-8244 | - |
dc.identifier.uri | https://oak.kribb.re.kr/handle/201005/30739 | - |
dc.description.abstract | Human respiratory aerosols contain diverse potential biomarkers for early disease diagnosis. Here, we report the direct and label-free detection of SARS-CoV-2 in respiratory aerosols using a highly adsorptive Au-TiO2 nanocomposite SERS face mask and an ablation-assisted autoencoder. The Au-TiO2 SERS face mask continuously preconcentrates and efficiently captures the oronasal aerosols, which substantially enhances the SERS signal intensities by 47% compared to simple Au nanoislands. The ultrasensitive Au-TiO2 nanocomposites also demonstrate the successful detection of SARS-CoV-2 spike proteins in artificial respiratory aerosols at a 100 pM concentration level. The deep learning-based autoencoder, followed by the partial ablation of nondiscriminant SERS features of spike proteins, allows a quantitative assay of the 101-104 pfu/mL SARS-CoV-2 lysates (comparable to 19-29 PCR cyclic threshold from COVID-19 patients) in aerosols with an accuracy of over 98%. The Au-TiO2 SERS face mask provides a platform for breath biopsy for the detection of various biomarkers in respiratory aerosols. | - |
dc.publisher | Amer Chem Soc | - |
dc.title | Highly adsorptive Au-TiO2 nanocomposites for the SERS face mask allow the machine-learning-based quantitative assay of SARS-CoV-2 in artificial breath aerosols | - |
dc.title.alternative | Highly adsorptive Au-TiO2 nanocomposites for the SERS face mask allow the machine-learning-based quantitative assay of SARS-CoV-2 in artificial breath aerosols | - |
dc.type | Article | - |
dc.citation.title | ACS Applied Materials & Interfaces | - |
dc.citation.number | 49 | - |
dc.citation.endPage | 54557 | - |
dc.citation.startPage | 54550 | - |
dc.citation.volume | 14 | - |
dc.contributor.affiliatedAuthor | Taejoon Kang | - |
dc.contributor.alternativeName | 황Charles | - |
dc.contributor.alternativeName | 이상연 | - |
dc.contributor.alternativeName | 이세진 | - |
dc.contributor.alternativeName | 김한진 | - |
dc.contributor.alternativeName | 강태준 | - |
dc.contributor.alternativeName | 이도헌 | - |
dc.contributor.alternativeName | 정기훈 | - |
dc.identifier.bibliographicCitation | ACS Applied Materials & Interfaces, vol. 14, no. 49, pp. 54550-54557 | - |
dc.identifier.doi | 10.1021/acsami.2c16446 | - |
dc.subject.keyword | SARS-CoV-2 | - |
dc.subject.keyword | Surface-enhanced Raman spectroscopy | - |
dc.subject.keyword | Breath biopsy | - |
dc.subject.keyword | Machine-learning, plasmonics | - |
dc.subject.keyword | Nanocomposite | - |
dc.subject.local | SARS-CoV-2 | - |
dc.subject.local | SARS-Cov-2 | - |
dc.subject.local | Surface-enhanced Raman spectroscopy | - |
dc.subject.local | Surface enhanced Raman spectroscopy | - |
dc.subject.local | Breath biopsy | - |
dc.subject.local | Machine-learning, plasmonics | - |
dc.subject.local | Nanocomposite | - |
dc.subject.local | Nanocomposites | - |
dc.subject.local | nanocomposite | - |
dc.description.journalClass | Y | - |
There are no files associated with this item.
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.