Biotransformation of D-xylose-rich rice Husk hydrolysate by a rice paddy soil bacterium, Priestia sp. strain JY310, to low molecular weight poly(3-hydroxybutyrate)

Cited 0 time in scopus
Metadata Downloads
Title
Biotransformation of D-xylose-rich rice Husk hydrolysate by a rice paddy soil bacterium, Priestia sp. strain JY310, to low molecular weight poly(3-hydroxybutyrate)
Author(s)
J Y Lee; M H Kim; J S Kim; B R Yun; Do Young Kim; C W Chung
Bibliographic Citation
Biomolecules, vol. 13, no. 1, pp. 131-131
Publication Year
2023
Abstract
Poly(3-hydroxybutyrate) (PHB) is a versatile thermoplastic with superior biodegradability and biocompatibility that is intracellularly accumulated by numerous bacterial and archaeal species. Priestia sp. strain JY310 that was able to efficiently biotransform reducing sugars in d-xylose-rich rice husk hydrolysate (reducing sugarRHH) to PHB was isolated from the soil of a rice paddy. Reducing sugarRHH including 12.5% d-glucose, 75.3% d-xylose, and 12.2% d-arabinose was simply prepared using thermochemical hydrolysis of 3% H2SO4-treated rice husk for 15 min at 121 °C. When cultured with 20 g/L reducing sugarRHH under optimized culture conditions in a batch bioreactor, Priestia sp. strain JY310 could produce PHB homopolymer up to 50.4% of cell dry weight (6.2 g/L). The melting temperature, heat of fusion, and thermal decomposition temperature of PHB were determined to be 167.9 °C, 92.1 J/g, and 268.1 °C, respectively. The number average and weight average molecular weights of PHB with a broad polydispersity index value (4.73) were estimated to be approximately 16.2 and 76.8 kg/mol, respectively. The findings of the present study suggest that Priestia sp. strain JY310 can be exploited as a good candidate for the low-cost production of low molecular weight PHB with improved biodegradability and reduced brittleness from inexpensive agricultural waste hydrolysates.
Keyword
Priestia sp.Thermochemical hydrolysisRice husk hydrolysateBiotransformationLow molecular weightPoly(3-hydroxybutyrate)PHB
ISSN
2218-273X
Publisher
MDPI
DOI
http://dx.doi.org/10.3390/biom13010131
Type
Article
Appears in Collections:
Division of Biomedical Research > Microbiome Convergence Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.