7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid overcomes chemoresistance of 5-fluorouracil by suppressing the infiltration of tumor-associated macrophages and inhibiting the activation of cancer stem cells in a colorectal cancer xenograft model

Cited 11 time in scopus
Metadata Downloads
Title
7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid overcomes chemoresistance of 5-fluorouracil by suppressing the infiltration of tumor-associated macrophages and inhibiting the activation of cancer stem cells in a colorectal cancer xenograft model
Author(s)
Yan Su; H S Choi; Jong Hyun ChoiHee-Sik Kim; Y S Jang; Jeong-Woo Seo
Bibliographic Citation
Marine Drugs, vol. 21, no. 2, pp. 80-80
Publication Year
2023
Abstract
Although the tumor bulk is initially reduced by 5-fluorouracil (5-FU), chemoresistance developed due to prolonged chemotherapy in colorectal cancer (CRC). The enrichment of cancer stem cells (CSCs) and the infiltration of tumor-associated macrophages (TAMs) contribute to chemoresistance and poor outcomes. A docosahexaenoic acid derivative developed by our group, 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA), exerts antitumor effects against TAMs infiltration and CSCs enrichment in our previous study. The current study aimed to investigate whether diHEP-DPA was able to overcome chemoresistance to 5-FU in CRCs, together with the potential synergistic mechanisms in a CT26-BALB/c mouse model. Our results suggested that although 5-FU inhibited tumor growth, 5-FU enriched CSCs via the WNT/β-catenin signaling pathway, resulting in chemoresistance in CRCs. However, we revealed that 5-FU promoted the infiltration of TAMs via the NF-kB signaling pathway and improved epithelial?mesenchymal transition (EMT) via the signal transducer and activator of the transcription 3 (STAT3) signaling pathway; these traits were believed to contribute to CSC activation. Furthermore, supplementation with diHEP-DPA could overcome drug resistance by decreasing the CSCs, suppressing the infiltration of TAMs, and inhibiting EMT progression. Additionally, the combinatorial treatment of diHEP-DPA and 5-FU effectively enhanced phagocytosis by blocking the CD47/signal regulatory protein alpha (SIRPα) axis. These findings present that diHEP-DPA is a potential therapeutic supplement to improve drug outcomes and suppress chemoresistance associated with the current 5-FU-based therapies for colorectal cancer.
Keyword
Colorectal cancer5-fluorouracil7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acidTumor-associated macrophagesChemoresistance
ISSN
1660-3397
Publisher
MDPI
Full Text Link
http://dx.doi.org/10.3390/md21020080
Type
Article
Appears in Collections:
Jeonbuk Branch Institute > Microbial Biotechnology Research Center > 1. Journal Articles
Synthetic Biology and Bioengineering Research Institute > Cell Factory Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.