Novel (E)-3-(3-oxo-4-substituted-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-N-hydroxypropenamides as histone deacetylase inhibitors: design, synthesis and bioevaluation

Cited 1 time in scopus
Metadata Downloads
Title
Novel (E)-3-(3-oxo-4-substituted-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-N-hydroxypropenamides as histone deacetylase inhibitors: design, synthesis and bioevaluation
Author(s)
D M Sang; I H Na; D T Anh; D T M Dung; N T T Hang; N T Phuong-Anh; P T Hai; D T K Oanh; T T Tung; S J Lee; Ju Hee KwonJong Soon Kang; S B Han; D T T Hai; N H Nam
Bibliographic Citation
Chemistry & Biodiversity, vol. 20, no. 5, pp. e202201030-e202201030
Publication Year
2023
Abstract
Herein, we report the design, synthesis and evaluation of novel (E)-3-(3-oxo-4-substituted-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-N-hydroxypropenamides (4 a-i, 7 a-g) targeting histone deacetylases. Three human cancer cell lines were used to test the cytotoxicity of the synthesized compounds (SW620, colon; PC-3, prostate; NCI-H23, lung cancer); inhibitory activity towards HDAC; anticancer activity; as well as their impact on the cell cycle and apoptosis. As a result, compounds 4 a-i bearing the alkyl substituents seemed to be less potent than the benzyl-containing compounds 7 a-g in all biological assays. Compounds 7 e-f were found to be the most active HDAC inhibitors with IC50 of 1.498±0.020 μM and 1.794±0.159 μM, respectively. In terms of cytotoxicity and anticancer assay, 7 e and 7 f also showed good activity with IC50 values in the micromolar range. In addition, the cell cycle and apoptosis of SW620 were affected by compound 7 f in almost a similar manner to that of reference compound SAHA. Docking assays were carried out for analysis the binding mode and selectivity of this compound toward 8 HDAC isoforms. Overall, our data confirmed that the inhibition of HDAC plays a pivotal role in their anticancer activity.
ISSN
1612-1872
Publisher
Wiley
Full Text Link
http://dx.doi.org/10.1002/cbdv.202201030
Type
Article
Appears in Collections:
Ochang Branch Institute > Division of National Bio-Infrastructure > Laboratory Animal Resource & Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.