Cited 74 time in
- Title
- An integrated view of lipid metabolism in ferroptosis revisited via lipidomic analysis
- Author(s)
- Jong Woo Kim; Ji Yoon Lee; Mihee Oh; Eun-Woo Lee
- Bibliographic Citation
- Experimental and Molecular Medicine, vol. 55, no. 8, pp. 1620-1631
- Publication Year
- 2023
- Abstract
- Ferroptosis is a form of regulated cell death characterized by iron-dependent lipid peroxidation. This process contributes to cellular and tissue damage in various human diseases, such as cardiovascular diseases, neurodegeneration, liver disease, and cancer. Although polyunsaturated fatty acids (PUFAs) in membrane phospholipids are preferentially oxidized, saturated/monounsaturated fatty acids (SFAs/MUFAs) also influence lipid peroxidation and ferroptosis. In this review, we first explain how cells differentially synthesize SFA/MUFAs and PUFAs and how they control fatty acid pools via fatty acid uptake and β-oxidation, impacting ferroptosis. Furthermore, we discuss how fatty acids are stored in different lipids, such as diacyl or ether phospholipids with different head groups; triglycerides; and cholesterols. Moreover, we explain how these fatty acids are released from these molecules. In summary, we provide an integrated view of the diverse and dynamic metabolic processes in the context of ferroptosis by revisiting lipidomic studies. Thus, this review contributes to the development of therapeutic strategies for ferroptosis-related diseases.
- ISSN
- 1226-3613
- Publisher
- Springer-Nature Pub Group
- Full Text Link
- http://dx.doi.org/10.1038/s12276-023-01077-y
- Type
- Article
- Appears in Collections:
- Division of Research on National Challenges > Biodefense Research Center > 1. Journal Articles
Division of A.I. & Biomedical Research > Metabolic Regulation Research Center > 1. Journal Articles
- Files in This Item:
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.