Engineered Methylococcus capsulatus Bath for efficient methane conversion to isoprene

Cited 5 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorG Emelianov-
dc.contributor.authorDong Uk Song-
dc.contributor.authorNulee Jang-
dc.contributor.authorMinji Ko-
dc.contributor.authorSeong Keun Kim-
dc.contributor.authorEugene Rha-
dc.contributor.authorJonghyeok Shin-
dc.contributor.authorKil Koang Kwon-
dc.contributor.authorHaseong Kim-
dc.contributor.authorDae Hee Lee-
dc.contributor.authorHyewon Lee-
dc.contributor.authorSeung Goo Lee-
dc.date.accessioned2023-12-11T16:32:41Z-
dc.date.available2023-12-11T16:32:41Z-
dc.date.issued2024-
dc.identifier.issn0960-8524-
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/33071-
dc.description.abstractIsoprene has numerous industrial applications, including rubber polymer and potential biofuel. Microbial methane-based isoprene production could be a cost-effective and environmentally benign process, owing to a reduced carbon footprint and economical utilization of methane. In this study, Methylococcus capsulatus Bath was engineered to produce isoprene from methane by introducing the exogenous mevalonate (MVA) pathway. Overexpression of MVA pathway enzymes and isoprene synthase from Populus trichocarpa under the control of a phenol-inducible promoter substantially improved isoprene production. M. capsulatus Bath was further engineered using a CRISPR-base editor to disrupt the expression of soluble methane monooxygenase (sMMO), which oxidizes isoprene to cause toxicity. Additionally, optimization of the metabolic flux in the MVA pathway and culture conditions increased isoprene production to 228.1 mg/L, the highest known titer for methanotroph-based isoprene production. The developed methanotroph could facilitate the efficient conversion of methane to isoprene, resulting in the sustainable production of value-added chemicals.-
dc.publisherElsevier-
dc.titleEngineered Methylococcus capsulatus Bath for efficient methane conversion to isoprene-
dc.title.alternativeEngineered Methylococcus capsulatus Bath for efficient methane conversion to isoprene-
dc.typeArticle-
dc.citation.titleBioresource Technology-
dc.citation.number0-
dc.citation.endPage130098-
dc.citation.startPage130098-
dc.citation.volume393-
dc.contributor.affiliatedAuthorDong Uk Song-
dc.contributor.affiliatedAuthorNulee Jang-
dc.contributor.affiliatedAuthorMinji Ko-
dc.contributor.affiliatedAuthorSeong Keun Kim-
dc.contributor.affiliatedAuthorEugene Rha-
dc.contributor.affiliatedAuthorJonghyeok Shin-
dc.contributor.affiliatedAuthorKil Koang Kwon-
dc.contributor.affiliatedAuthorHaseong Kim-
dc.contributor.affiliatedAuthorDae Hee Lee-
dc.contributor.affiliatedAuthorHyewon Lee-
dc.contributor.affiliatedAuthorSeung Goo Lee-
dc.contributor.alternativeNameEmelianov-
dc.contributor.alternativeName송동욱-
dc.contributor.alternativeName장누리-
dc.contributor.alternativeName고민지-
dc.contributor.alternativeName김성근-
dc.contributor.alternativeName나유진-
dc.contributor.alternativeName신종혁-
dc.contributor.alternativeName권길광-
dc.contributor.alternativeName김하성-
dc.contributor.alternativeName이대희-
dc.contributor.alternativeName이혜원-
dc.contributor.alternativeName이승구-
dc.identifier.bibliographicCitationBioresource Technology, vol. 393, pp. 130098-130098-
dc.identifier.doi10.1016/j.biortech.2023.130098-
dc.subject.keywordMethanotroph-
dc.subject.keywordMethane valorization-
dc.subject.keywordIsoprene-
dc.subject.keywordMevalonate-
dc.subject.localMethanotroph-
dc.subject.localMethanotrophs-
dc.subject.localMethane valorization-
dc.subject.localIsoprene-
dc.subject.localisoprene-
dc.subject.localMevalonate-
dc.description.journalClassY-
Appears in Collections:
Synthetic Biology and Bioengineering Research Institute > Synthetic Biology Research Center > 1. Journal Articles
Korea Biofoundry > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.