Cited 3 time in
- Title
- Preliminary investigation on efficacy and safety of substance P-coated stent for promoting re-endothelialization: a porcine coronary artery restenosis model
- Author(s)
- D S Park; S Oh; Y J Jin; M H Na; M Kim; J H Kim; D Y Hyun; K H Cho; Y J Hong; J H Kim; Y Ahn; P Hermida-Prieto; J M Va´zquez-Rodrı´guez; J L Gutierrez-Chico; L Marinas-Pardo; Kyung Seob Lim; J K Park; D H Byeon; Y N Cho; S J Kee; D S Sim; M H Jeong
- Bibliographic Citation
- Tissue Engineering and Regenerative Medicine, vol. 21, no. 1, pp. 53-64
- Publication Year
- 2024
- Abstract
- Background: Current polymer-based drug-eluting stents (DESs) have fundamental issues about inflammation and delayed re-endothelializaton of the vessel wall. Substance-P (SP), which plays an important role in inflammation and endothelial cells, has not yet been applied to coronary stents. Therefore, this study compares poly lactic-co-glycolic acid (PLGA)-based everolimus-eluting stents (PLGA-EESs) versus 2-methacryloyloxyethyl phosphorylcholine (MPC)-based SP-eluting stents (MPC-SPs) in in-vitro and in-vivo models.
Methods: The morphology of the stent surface and peptide/drug release kinetics from stents were evaluated. The in-vitro proliferative effect of SP released from MPC-SP is evaluated using human umbilical vein endothelial cell. Finally, the safety and efficacy of the stent are evaluated after inserting it into a pig's coronary artery.
Results: Similar to PLGA-EES, MPC-SP had a uniform surface morphology with very thin coating layer thickness (2.074 μm). MPC-SP showed sustained drug release of SP for over 2 weeks. Endothelial cell proliferation was significantly increased in groups treated with SP (n = 3) compared with the control (n = 3) and those with everolimus (n = 3) (SP: 118.9 ± 7.61% vs. everolimus: 64.3 ± 12.37% vs. the control: 100 ± 6.64%, p < 0.05). In the animal study, the percent stenosis was higher in MPC-SP group (n = 7) compared to PLGA-EES group (n = 7) (MPC-SP: 28.6 ± 10.7% vs. PLGA-EES: 16.7 ± 6.3%, p < 0.05). MPC-SP group showed, however, lower inflammation (MPC-SP: 0.3 ± 0.26 vs. PLGA-EES: 1.2 ± 0.48, p < 0.05) and fibrin deposition (MPC-SP: 1.0 ± 0.73 vs. PLGA-EES: 1.5 ± 0.59, p < 0.05) around the stent strut. MPC-SP showed more increased expression of cluster of differentiation 31, suggesting enhanced re-endothelialization.
Conclusion: Compared to PLGA-EES, MPC-SP demonstrated more decreased inflammation of the vascular wall and enhanced re-endothelialization and stent coverage. Hence, MPC-SP has the potential therapeutic benefits for the treatment of coronary artery disease by solving limitations of currently available DESs.
- Keyword
- Animal researchCoronary artery diseaseRe-endothelializationStentsSubstance P
- ISSN
- 1738-2696
- Publisher
- Korea Soc-Assoc-Inst
- Full Text Link
- http://dx.doi.org/10.1007/s13770-023-00608-y
- Type
- Article
- Appears in Collections:
- Ochang Branch Institute > Division of National Bio-Infrastructure > Futuristic Animal Resource & Research Center > 1. Journal Articles
- Files in This Item:
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.