Cited 3 time in
- Title
- Biotransformation of 2-keto-4-hydroxybutyrate via aldol condensation using an efficient and thermostable carboligase from Deinococcus radiodurans
- Author(s)
- Y J Jeong; M J Seo; Bong Hyun Sung; J S Kim; S J Yeom
- Bibliographic Citation
- Bioresources and Bioprocessing, vol. 11, no. 1, pp. 9-9
- Publication Year
- 2024
- Abstract
- The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 μmol min?1 mg?1. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg2+, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L?1) 2-KHB over 60 min with a volumetric productivity of 8.94 g L?1 h?1 and a specific productivity of 357.6 mg mg-enzyme?1 h?1. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L?1) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L?1 h?1 and 583.4 mg mg-enzyme?1 h?1, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyd
- Keyword
- FormaldehydePyruvatePyruvate aldolase2-keto-4-hydroxybutyrateDeinococcus radiodurans
- ISSN
- 2197-4365
- Publisher
- Springer
- Full Text Link
- http://dx.doi.org/10.1186/s40643-024-00727-x
- Type
- Article
- Appears in Collections:
- Synthetic Biology and Bioengineering Research Institute > 1. Journal Articles
- Files in This Item:
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.