Ethanol extract of Ampelopsis brevipedunculata rhizomes suppresses IgE-mediated mast cell activation and anaphylaxis

Cited 0 time in scopus
Metadata Downloads
Title
Ethanol extract of Ampelopsis brevipedunculata rhizomes suppresses IgE-mediated mast cell activation and anaphylaxis
Author(s)
J Y Park; M J Kim; Y A Choi; Seung Woong Lee; Soyoung Lee; Y H Jang; S H Kim
Bibliographic Citation
Advances in Pharmacological and Pharmaceutical Sciences, vol. 2024, pp. 5083956-5083956
Publication Year
2024
Abstract
More than 20% of the world’s population suffers from allergic diseases, including allergic asthma, rhinitis, and atopic dermatitis that severely reduce the patient’s quality of life. The treatment of allergy has been developed, but there are still unmet needs. Ampelopsis brevipedunculata (Maxim.) Trautv. is a traditional medicinal herb with beneficial bioactivities, such as antioxidant, anti-hypertension, anti-viral, anti-mutagenic, and skin and liver (anti-hepatotoxic) protective actions. However, its anti-allergic effect has not been addressed. This study designed to investigate the pharmacological effect of an ethanol extract of A. brevipedunculata rhizomes (ABE) on mast cell and anaphylaxis models. For in vivo studies, we used ovalbumin-induced active systemic anaphylaxis (ASA) and immunoglobulin (Ig) E-mediated passive cutaneous anaphylaxis (PCA) models. In ASA model, oral administration of ABE (1, 10, and 100 mg/kg) attenuated the anaphylactic responses, such as hypothermia, serum histamine, and IgE productions. In PCA model, ABE also suppressed the plasma extravasation and swelling. The underlying mechanisms of action were identified in various mast cell types. In vitro, ABE (10, 30, and 60?μg/mL) inhibited the release of essential allergic mediators, such as histamine and β-hexosaminidase, in a concentration-dependent manner. ABE prevented the rapid increase in intracellular calcium levels induced by the DNP-HSA challenge. In addition, ABE downregulated the tumor necrosis factor-α and interleukin-4 by suppressing the activation of nuclear factor-κB. Collectively, this study is the first to identify the anti-allergic effect of ABE, suggesting that ABE is a promising candidate for treating allergic diseases.
ISSN
2633-4682
Publisher
Hindawi Ltd
Full Text Link
http://dx.doi.org/10.1155/2024/5083956
Type
Article
Appears in Collections:
Jeonbuk Branch Institute > Functional Biomaterial Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.