Cited 1 time in
- Title
- Secretory production of the Hericium erinaceus laccase from Saccharomyces cerevisiae
- Author(s)
- Jin Kang; Thuat Van La; Mi-Jin Kim; Jung Hoon Bae; Bong Hyun Sung; Seonghun Kim; Jung Hoon Sohn
- Bibliographic Citation
- Journal of Microbiology and Biotechnology, vol. 34, no. 4, pp. 930-939
- Publication Year
- 2024
- Abstract
- Mushroom laccases play a crucial role in lignin depolymerization, one of the most critical challenges in lignin utilization. Importantly, laccases can utilize a wide range of substrates, such as toxicants and antibiotics. This study isolated a novel laccase, named HeLac4c, from endophytic white-rot fungi Hericium erinaceus mushrooms. The cDNAs for this enzyme were 1569 bp in length and encoded a protein of 523 amino acids, including a 20 amino-acid signal peptide. Active extracellular production of glycosylated laccases from Saccharomyces cerevisiae was successfully achieved by selecting an optimal translational fusion partner. We observed that 5 and 10 mM Ca2+, Zn2+, and K+ increased laccase activity, whereas 5 mM Fe2+ and Al3+ inhibited laccase activity. The laccase activity was inhibited by the addition of low concentrations of sodium azide and L-cysteine. The optimal pH for the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt was 4.4. Guaiacylglycerol-β-guaiacyl ether, a lignin model compound, was polymerized by the HeLac4c enzyme. These results indicated that HeLac4c is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products for environmental biotechnological applications.
- Keyword
- Recombinant proteinSecretionLaccaseHericium erinaceusSaccharomyces cerevisiae
- ISSN
- 1017-7825
- Publisher
- Korea Soc-Assoc-Inst
- Full Text Link
- http://dx.doi.org/10.4014/jmb.2312.12043
- Type
- Article
- Appears in Collections:
- Synthetic Biology and Bioengineering Research Institute > Synthetic Biology Research Center > 1. Journal Articles
Synthetic Biology and Bioengineering Research Institute > 1. Journal Articles
Jeonbuk Branch Institute > Microbial Biotechnology Research Center > 1. Journal Articles
- Files in This Item:
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.