Cited 21 time in
- Title
- A multicellular liver organoid model for investigating hepatitis C virus infection and non-alcoholic fatty liver disease progression
- Author(s)
- Jaeseo Lee; D Gil; H Park; Y Lee; Seon Ju Mun; Yongbo Shin; E Jo; M P Windisch; J H Kim; Myung Jin Son
- Bibliographic Citation
- Hepatology, vol. 80, pp. 186-201
- Publication Year
- 2024
- Abstract
- Background and aims: HCV infection can be successfully managed with antiviral therapies; however, progression to chronic liver disease states, including NAFLD, is common. There is currently no reliable in vitro model for investigating host-viral interactions underlying the link between HCV and NAFLD; although liver organoids (LOs) show promise, they currently lack nonparenchymal cells, which are key to modeling disease progression.
Approach and results: Here, we present a novel, multicellular LO model using a coculture system of macrophages and LOs differentiated from the same human pluripotent stem cells (PSCs). The cocultured macrophages shifted toward a Kupffer-like cell type, the liver-resident macrophages present in vivo , providing a suitable model for investigating NAFLD pathogenesis. With this multicellular Kupffer-like cell-containing LO model, we found that HCV infection led to lipid accumulation in LOs by upregulating host lipogenesis, which was more marked with macrophage coculture. Reciprocally, long-term treatment of LOs with fatty acids upregulated HCV amplification and promoted inflammation and fibrosis. Notably, in our Kupffer-like cell-containing LO model, the effects of 3 drugs for NASH that have reached phase 3 clinical trials exhibited consistent results with the clinical outcomes.
Conclusions: Taken together, we introduced a multicellular LO model consisting of hepatocytes, Kupffer-like cells, and HSCs, which recapitulated host-virus intercommunication and intercellular interactions. With this novel model, we present a physiologically relevant system for the investigation of NAFLD progression in patients with HCV.
- ISSN
- 0270-9139
- Publisher
- Wiley
- Full Text Link
- http://dx.doi.org/10.1097/HEP.0000000000000683
- Type
- Article
- Appears in Collections:
- Division of Research on National Challenges > Stem Cell Convergenece Research Center > 1. Journal Articles
- Files in This Item:
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.