DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hyunju Kang | - |
dc.contributor.author | J Lee | - |
dc.contributor.author | Jeong Moon | - |
dc.contributor.author | T Lee | - |
dc.contributor.author | J Kim | - |
dc.contributor.author | Yeonwoo Jeong | - |
dc.contributor.author | Eun Kyung Lim | - |
dc.contributor.author | Juyeon Jung | - |
dc.contributor.author | Y Jung | - |
dc.contributor.author | S J Lee | - |
dc.contributor.author | K G Lee | - |
dc.contributor.author | S Ryu | - |
dc.contributor.author | Taejoon Kang | - |
dc.date.accessioned | 2024-09-02T16:33:40Z | - |
dc.date.available | 2024-09-02T16:33:40Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 1613-6810 | - |
dc.identifier.uri | https://oak.kribb.re.kr/handle/201005/35714 | - |
dc.description.abstract | Proactive management of foodborne illness requires routine surveillance of foodborne pathogens, which requires developing simple, rapid, and sensitive detection methods. Here, a strategy is presented that enables the detection of multiple foodborne bacteria using a 3D nanostructure swab and deep learning-based Raman signal classification. The nanostructure swab efficiently captures foodborne pathogens, and the portable Raman instrument directly collects the Raman signals of captured bacteria. a deep learning algorithm has been demonstrated, 1D convolutional neural network with binary labeling, achieves superior performance in classifying individual bacterial species. This methodology has been extended to mixed bacterial populations, maintaining accuracy close to 100%. In addition, the gradient-weighted class activation mapping method is used to provide an investigation of the Raman bands for foodborne pathogens. For practical application, blind tests are conducted on contaminated kitchen utensils and foods. The proposed technique is validated by the successful detection of bacterial species from the contaminated surfaces. The use of a 3D nanostructure swab, portable Raman device, and deep learning-based classification provides a powerful tool for rapid identification (?5 min) of foodborne bacterial species. The detection strategy shows significant potential for reliable food safety monitoring, making a meaningful contribution to public health and the food industry. | - |
dc.publisher | Wiley | - |
dc.title | Multiplex detection of foodborne pathogens using 3D nanostructure swab and deep learning-based classification of Raman spectra | - |
dc.title.alternative | Multiplex detection of foodborne pathogens using 3D nanostructure swab and deep learning-based classification of Raman spectra | - |
dc.type | Article | - |
dc.citation.title | Small | - |
dc.citation.number | 35 | - |
dc.citation.endPage | e2308317 | - |
dc.citation.startPage | e2308317 | - |
dc.citation.volume | 20 | - |
dc.contributor.affiliatedAuthor | Hyunju Kang | - |
dc.contributor.affiliatedAuthor | Jeong Moon | - |
dc.contributor.affiliatedAuthor | Yeonwoo Jeong | - |
dc.contributor.affiliatedAuthor | Eun Kyung Lim | - |
dc.contributor.affiliatedAuthor | Juyeon Jung | - |
dc.contributor.affiliatedAuthor | Taejoon Kang | - |
dc.contributor.alternativeName | 강현주 | - |
dc.contributor.alternativeName | 이준형 | - |
dc.contributor.alternativeName | 문정 | - |
dc.contributor.alternativeName | 이태구 | - |
dc.contributor.alternativeName | 김주은 | - |
dc.contributor.alternativeName | 정연우 | - |
dc.contributor.alternativeName | 임은경 | - |
dc.contributor.alternativeName | 정주연 | - |
dc.contributor.alternativeName | 정용원 | - |
dc.contributor.alternativeName | 이석재 | - |
dc.contributor.alternativeName | 이경G | - |
dc.contributor.alternativeName | 류승화 | - |
dc.contributor.alternativeName | 강태준 | - |
dc.identifier.bibliographicCitation | Small, vol. 20, no. 35, pp. e2308317-e2308317 | - |
dc.identifier.doi | 10.1002/smll.202308317 | - |
dc.description.journalClass | Y | - |
There are no files associated with this item.
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.