Potential siderophore-dependent mutualism in the harmful dinoflagellate Alexandrium pacificum (Group IV) and bacterium Photobacterium sp. TY1-4 under iron-limited conditions

Cited 1 time in scopus
Metadata Downloads
Title
Potential siderophore-dependent mutualism in the harmful dinoflagellate Alexandrium pacificum (Group IV) and bacterium Photobacterium sp. TY1-4 under iron-limited conditions
Author(s)
Yue Jiang; H H Shin; B S Park; Zhun Li
Bibliographic Citation
Harmful Algae, vol. 139, pp. 102726-102726
Publication Year
2024
Abstract
Specific bacterial species induce algal blooms by producing growth-promoting substances, such as siderophores, under iron-limited conditions. However, the molecular mechanisms underlying these effects remain poorly understood. This study investigates the interactions between the harmful dinoflagellate Alexandrium pacificum (Group IV) and siderophore-producing bacteria, with a focus on iron acquisition facilitated by bacterial siderophores. During algal bloom seasons in the South Sea of Korea, Photobacterium sp. TY1-4 was isolated, which enhances A. pacificum cell density under iron-deficient conditions, TY1-4 can use the sterile exudates from A. pacificum as the sole source of carbon, suggesting a mutualistic relationship. Transcriptomic and genomic analyses revealed siderophore-mediated redox-based signaling and non-reductive pathways enhancing iron bioavailability. Photobacterium sp. TY1-4 initiates siderophore production through quorum sensing, whereas A. pacificum utilizes specific receptors and transporters for hydroxamate-type siderophores (ApFHUA and ApFHUC) to uptake iron. Three redox key iron-uptake genes were also identified in A. pacificum: membrane-bound ferroxidase ApFET3, high-affinity iron permease ApFTR1, and ferric-chelate reductases/oxidoreductases ApFRE1, with transcription levels inversely related to bioavailable iron. Increased iron bioavailability mediated by siderophores alleviates iron stress in A. pacificum, supporting its growth in iron-scarce environments. Additionally, A. pacificum co-cultured with Photobacterium sp. TY1-4 synthesized high-toxicity STXs, including GTX4, GTX2, and STX. These findings highlight the critical role of bacterial siderophores in iron binding and their potential impact on harmful algal bloom dynamics.
Keyword
DinoflagellateBacteriaSiderophoresIron bioavailabilityHarmful algal bloom
ISSN
1568-9883
Publisher
Elsevier
Full Text Link
http://dx.doi.org/10.1016/j.hal.2024.102726
Type
Article
Appears in Collections:
Jeonbuk Branch Institute > Biological Resource Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.