Towards maximizing biomass and lipid productivity: high-throughput screening assay for prospecting heterotrophic growth for new microalgal isolates

Cited 0 time in scopus
Metadata Downloads
Title
Towards maximizing biomass and lipid productivity: high-throughput screening assay for prospecting heterotrophic growth for new microalgal isolates
Author(s)
Su-Bin Park; Yu Rim?Lee; Jin-Ho YunHong Il Choi; Eun Jeong Sim; Dong Yun ChoiDae Hyun ChoHee-Sik KimYong Jae Lee
Bibliographic Citation
Microbial Cell Factories, vol. 23, pp. 299-299
Publication Year
2024
Abstract
Background: Microalgae have emerged as sustainable alternatives to fossil fuels and high-value petrochemicals. Despite the commercial potential of microalgae, their low biomass productivity is a significant limiting factor for large-scale production. In the photoautotrophic cultivation of microalgae, achievable cell density levels depend on the light transmittance of the production system, which can significantly decrease the photosynthetic rate and biomass production. In contrast, the mixotrophic cultivation of microalgae using heterotrophic carbon sources enables high-density cultivation, which significantly enhances biomass productivity. The identification of optimal production conditions is crucial for improving biomass productivity; however, it is typically time- and resource-consuming. To overcome this problem, high-throughput screening (HTS) system presents a practical approach to maximize biomass and lipid production and enhance the industrial applicability of microalgae. Results: In this study, we proposed a two-step HTS assay that allows effective screening of heterotrophic conditions compatible with new microalgal isolates. To confirm the effectiveness of the HTS assay, three microalgal isolates with distinctive morphological and genetic traits were selected. Suitable cultivation conditions, including various heterotrophic carbon sources, substrate concentrations, and temperatures, were investigated using a two-step HTS assay. The optimized conditions were validated at the flask scale, which confirmed a significant enhancement in the biomass and lipid productivity of each isolate. Moreover, the two-step HTS assay notably enhanced economic and temporal efficiency compared to conventional flask-based optimization. Conclusions: These results suggest that our two-step HTS assay is an efficient strategy for investigating and optimizing microalgal culture conditions to maximize biomass and lipid productivity. This approach has the potential to enhance the industrial applicability of microalgae and facilitate the seamless transition from laboratory to field applications.
Keyword
MicroalgaeHigh-throughput screeningOptimizationHeterotrophic carbon substrateLipid accumulation
ISSN
1475-2859
Publisher
Springer-BMC
Full Text Link
http://dx.doi.org/10.1186/s12934-024-02550-7
Type
Article
Appears in Collections:
Synthetic Biology and Bioengineering Research Institute > Cell Factory Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.