Transition temperature-guided design of lipid nanoparticles for effective mRNA delivery

Cited 1 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorJeong Eun Shin-
dc.contributor.authorEun-Jeong Won-
dc.contributor.authorJ Xu-
dc.contributor.authorJ C Lee-
dc.contributor.authorJ K Bang-
dc.contributor.authorM J Mitchell-
dc.contributor.authorHyunjoo Cha-Molstad-
dc.date.accessioned2025-05-15T16:32:19Z-
dc.date.available2025-05-15T16:32:19Z-
dc.date.issued2025-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/38185-
dc.description.abstractLipid nanoparticles (LNPs) are promising mRNA delivery vehicles due to their biocompatibility and tunable characteristics. While current rational design approaches focus on ionizable lipids’ pKa and zeta potential to optimize mRNA encapsulation and endosomal escape, the selection of helper lipids remains largely empirical. We propose that the lipid transition temperature (Tm), marking the shift from the gel to the liquid crystalline phase, can guide rational helper lipid selection. Through screening 54 ionizable lipids, we identified H7T4, which displayed favorable physicochemical properties when combined with its tail variants but exhibited poor transfection efficiency. Using nano differential scanning calorimetry (nDSC) and biological small-angle X-ray scattering (BioSAXS), we found that lowering the system’s Tm by combining H7T4 (high transition temperature) with a low-transition-temperature helper lipid such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) significantly enhanced mRNA cellular uptake both in vitro and in vivo. These findings establish Tm as a crucial parameter for a rational LNP design.-
dc.publisherAmer Chem Soc-
dc.titleTransition temperature-guided design of lipid nanoparticles for effective mRNA delivery-
dc.title.alternativeTransition temperature-guided design of lipid nanoparticles for effective mRNA delivery-
dc.typeArticle-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.number19-
dc.citation.endPage28024-
dc.citation.startPage28012-
dc.citation.volume17-
dc.contributor.affiliatedAuthorJeong Eun Shin-
dc.contributor.affiliatedAuthorEun-Jeong Won-
dc.contributor.affiliatedAuthorHyunjoo Cha-Molstad-
dc.contributor.alternativeName신정은-
dc.contributor.alternativeName원은정-
dc.contributor.alternativeNameXu-
dc.contributor.alternativeName이종철-
dc.contributor.alternativeName방정규-
dc.contributor.alternativeNameMitchell-
dc.contributor.alternativeName차현주-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, vol. 17, no. 19, pp. 28012-28024-
dc.identifier.doi10.1021/acsami.5c06464-
dc.subject.keywordmRNA-
dc.subject.keywordLipidnanoparticle-
dc.subject.keywordnDSC-
dc.subject.keywordSAXS-
dc.subject.keywordIonizable lipid-
dc.subject.localmRNA-
dc.subject.localLipidnanoparticle-
dc.subject.localnDSC-
dc.subject.localSAXS-
dc.subject.localIonizable lipid-
dc.description.journalClassY-
Appears in Collections:
Ochang Branch Institute > Nucleic Acid Therapeutics Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.