Extracellular vesicle proteome analysis improves diagnosis of recurrence in triple-negative breast cancer

Cited 0 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorJ Y Hyon-
dc.contributor.authorM W Kim-
dc.contributor.authorK A Hyun-
dc.contributor.authorYeji Yang-
dc.contributor.authorS Ha-
dc.contributor.authorJ Y Kim-
dc.contributor.authorY Kim-
dc.contributor.authorS Park-
dc.contributor.authorH Gawk-
dc.contributor.authorH Lee-
dc.contributor.authorS Lee-
dc.contributor.authorS Moon-
dc.contributor.authorE H Han-
dc.contributor.authorJinyoung Kim-
dc.contributor.authorJ Y Yang-
dc.contributor.authorH I Jung-
dc.contributor.authorS I Kim-
dc.contributor.authorY H Chung-
dc.date.accessioned2025-06-26T16:32:52Z-
dc.date.available2025-06-26T16:32:52Z-
dc.date.issued2025-
dc.identifier.issn2001-3078-
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/38754-
dc.description.abstractWe explored the diagnostic utility of tumor-derived extracellular vesicles (tdEVs) in breast cancer (BC) by performing comprehensive proteomic profiling on plasma samples from 130 BC patients and 40 healthy controls (HC). Leveraging a microfluidic chip-based isolation technique optimized for low plasma volume and effective contaminant depletion, we achieved efficient enrichment of tdEVs. Proteomic analysis identified 26 candidate biomarkers differentially expressed between BC patients and HCs. To enhance biomarker selection robustness, we implemented a hybrid machine learning framework integrating LsBoost, convolutional neural networks, and support vector machines. Among the identified candidates, four EV proteins. ECM1, MBL2, BTD, and RAB5C. not only exhibited strong discriminatory performance, particularly for triple-negative breast cancer (TNBC), but also demonstrated potential relevance to disease recurrence, providing prognostic insights beyond initial diagnosis. Receiver operating characteristic (ROC) curve analysis demonstrated high diagnostic accuracy with an area under the curve (AUC) of 0.924 for BC and 0.973 for TNBC, as determined by mass spectrometry. These findings were further substantiated by immuno assay validation, which yielded an AUC of 0.986 for TNBC. Collectively, our results highlight the potential of EV proteomics as a minimally invasive, blood-based platform for both accurate detection and recurrence risk stratification in breast cancer and its aggressive subtypes, offering promising implications for future clinical applications.-
dc.publisherWiley-
dc.titleExtracellular vesicle proteome analysis improves diagnosis of recurrence in triple-negative breast cancer-
dc.title.alternativeExtracellular vesicle proteome analysis improves diagnosis of recurrence in triple-negative breast cancer-
dc.typeArticle-
dc.citation.titleJournal of Extracellular Vesicles-
dc.citation.number6-
dc.citation.endPagee70089-
dc.citation.startPagee70089-
dc.citation.volume14-
dc.contributor.affiliatedAuthorYeji Yang-
dc.contributor.affiliatedAuthorJinyoung Kim-
dc.contributor.alternativeName현주용-
dc.contributor.alternativeName김민우-
dc.contributor.alternativeName현경아-
dc.contributor.alternativeName양예지-
dc.contributor.alternativeName하성민-
dc.contributor.alternativeName김지예-
dc.contributor.alternativeName김영-
dc.contributor.alternativeName박선영-
dc.contributor.alternativeName곽호경-
dc.contributor.alternativeName이해지-
dc.contributor.alternativeName이수지-
dc.contributor.alternativeName문솔-
dc.contributor.alternativeName한은희-
dc.contributor.alternativeName김진영-
dc.contributor.alternativeName양지영-
dc.contributor.alternativeName정효일-
dc.contributor.alternativeName김승일-
dc.contributor.alternativeName정영호-
dc.identifier.bibliographicCitationJournal of Extracellular Vesicles, vol. 14, no. 6, pp. e70089-e70089-
dc.identifier.doi10.1002/jev2.70089-
dc.subject.keywordDiagnosis-
dc.subject.keywordMachine learning-
dc.subject.keywordMicrofluidics-
dc.subject.keywordProteomic analysis-
dc.subject.keywordTriple-negative breast cancer-
dc.subject.keywordTumour derived extracellular vesicles-
dc.subject.localdiagnosis-
dc.subject.localDiagnosis-
dc.subject.localmachine learning-
dc.subject.localMachine learning-
dc.subject.localmicrofluidics-
dc.subject.localMicrofluidics-
dc.subject.localProteomic analyses-
dc.subject.localProteomic analysis-
dc.subject.localproteomic analysis-
dc.subject.localTriple-negative breast cancer-
dc.subject.localtriple negative breast cancer-
dc.description.journalClassY-
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.