Cited 0 time in
- Title
- Near-infrared long lifetime upconversion nanoparticles for ultrasensitive microRNA detection via time-gated luminescence resonance energy transfer
- Author(s)
- S Kim; Yeonkyung Park; J Han; Hansol Kim; Hyowon Jang; S Kim; D Kang; M Y Lee; B H Jeong; Y Byun; Eun Kyung Lim; Juyeon Jung; Taejoon Kang; J Lee
- Bibliographic Citation
- Nature Communications, vol. 16, pp. 7557-7557
- Publication Year
- 2025
- Abstract
- Upconversion nanoparticle (UCNP)-based luminescence resonance energy transfer (LRET) biosensing offers advantages such as wash-free detection and precise biomolecule quantification. However, its sensitivity remains limited due to continuous energy transfer in co-doped UCNPs during LRET. Here we present a time-gated LRET strategy using near-infrared (NIR) long-lived luminescent UCNP donors (L-TG-LRET), achieving an 8-fold increase in luminescence lifetime without compromising emission intensity. This prolonged energy migration and transfer pathway significantly enhances sensitivity by preventing rapid Tm3+ reactivation during LRET to IRDye800 acceptors. Applying this approach to microRNA (miRNA) detection, we achieve a 17.9-fold higher sensitivity than conventional steady-state methods. Furthermore, the L-TG-LRET successfully quantifies miRNA expression in cancer cells, plasma, and exosomes, enabling the differentiation of cancer patients from healthy donors. Notably, this approach outperforms polymerase chain reaction in detecting low-abundance exosomal miRNAs. These results highlight the potential of L-TG-LRET system as a valuable tool for sensitive biomolecular detection in clinical diagnostics.
- ISSN
- 2041-1723
- Publisher
- Springer-Nature Pub Group
- Full Text Link
- http://dx.doi.org/10.1038/s41467-025-62802-x
- Type
- Article
- Appears in Collections:
- Division of Research on National Challenges > Bionanotechnology Research Center > 1. Journal Articles
- Files in This Item:
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.