Interpretability-driven deep learning for SERS-based classification of respiratory viruses

Cited 0 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorHyunju Kang-
dc.contributor.authorJ Lee-
dc.contributor.authorS H Lee-
dc.contributor.authorJ Jeon-
dc.contributor.authorC W Mun-
dc.contributor.authorJ Y Yang-
dc.contributor.authorDongkwon Seo-
dc.contributor.authorHyung-Jun Kwon-
dc.contributor.authorIn Chul Lee-
dc.contributor.authorS Kim-
dc.contributor.authorEun Kyung Lim-
dc.contributor.authorJuyeon Jung-
dc.contributor.authorY Jung-
dc.contributor.authorS G Park-
dc.contributor.authorS Ryu-
dc.contributor.authorTaejoon Kang-
dc.date.accessioned2025-08-25T16:32:33Z-
dc.date.available2025-08-25T16:32:33Z-
dc.date.issued2025-
dc.identifier.issn0956-5663-
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/39335-
dc.description.abstractRespiratory viruses, such as influenza A/B, RSV, SARS-CoV-2 and its variants, continue to be a major global health threat, highlighting the need for rapid and accurate variant-level diagnostics. Herein, we have developed a diagnostic platform for several respiratory viruses by integrating surface-enhanced Raman scattering (SERS) signals from three-dimensional (3D) plasmonic nanopillar substrates with interpretability-driven deep learning. The 3D plasmonic nanopillar array enables robust and reproducible capture of viral components, enhancing the SERS signal for virus-specific molecular fingerprinting. A one-dimensional convolutional neural network (1D-CNN) has been trained on SERS spectra from 13 respiratory virus types, including SARS-CoV-2 variants and sublineages, achieving over 98 % classification accuracy. To further improve model transparency, gradient-weighted class activation mapping (Grad-CAM) has been applied, revealing consistent Raman shift regions critical for virus discrimination across various media conditions. The platform has demonstrated reliable performance even in complex clinical samples, confirming its applicability for real-world diagnostics. The present approach offers a scalable and label-free solution for rapid virus detection, with potential for point-of-care applications and epidemiological surveillance.-
dc.publisherElsevier-
dc.titleInterpretability-driven deep learning for SERS-based classification of respiratory viruses-
dc.title.alternativeInterpretability-driven deep learning for SERS-based classification of respiratory viruses-
dc.typeArticle-
dc.citation.titleBiosensors & Bioelectronics-
dc.citation.number0-
dc.citation.endPage117891-
dc.citation.startPage117891-
dc.citation.volume289-
dc.contributor.affiliatedAuthorHyunju Kang-
dc.contributor.affiliatedAuthorDongkwon Seo-
dc.contributor.affiliatedAuthorHyung-Jun Kwon-
dc.contributor.affiliatedAuthorIn Chul Lee-
dc.contributor.affiliatedAuthorEun Kyung Lim-
dc.contributor.affiliatedAuthorJuyeon Jung-
dc.contributor.affiliatedAuthorTaejoon Kang-
dc.contributor.alternativeName강현주-
dc.contributor.alternativeName이준형-
dc.contributor.alternativeName이수현-
dc.contributor.alternativeName전진혁-
dc.contributor.alternativeName문채원-
dc.contributor.alternativeName양준영-
dc.contributor.alternativeName서동권-
dc.contributor.alternativeName권형준-
dc.contributor.alternativeName이인철-
dc.contributor.alternativeName김선주-
dc.contributor.alternativeName임은경-
dc.contributor.alternativeName정주연-
dc.contributor.alternativeName정용원-
dc.contributor.alternativeName박성규-
dc.contributor.alternativeName류승화-
dc.contributor.alternativeName강태준-
dc.identifier.bibliographicCitationBiosensors & Bioelectronics, vol. 289, pp. 117891-117891-
dc.identifier.doi10.1016/j.bios.2025.117891-
dc.subject.keywordRespiratory virus-
dc.subject.keywordSERS-
dc.subject.keywordPlasmonic nanostructure-
dc.subject.keywordCNN-
dc.subject.keywordGrad-CAM-
dc.subject.localRespiratory virus-
dc.subject.localSERS-
dc.subject.localCNN-
dc.description.journalClassY-
Appears in Collections:
Jeonbuk Branch Institute > Functional Biomaterial Research Center > 1. Journal Articles
Division of Research on National Challenges > Bionanotechnology Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.