Improved process for production of recombinant yeast-derived monomeric human G-CSF

Cited 27 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorCheon Soon Bae-
dc.contributor.authorDoo Suk Yang-
dc.contributor.authorJee Won Lee-
dc.contributor.authorYoung Hoon Park-
dc.description.abstractThe human granulocyte colony-stimulating factor (hG-CSF) was efficiently secreted at high levels in fed-batch cultures of recombinant Saccharomyces cerevisiae. However, the secreted recombinant hG-CSF (rhG-CSF) was shown to exist as large multimers in the culture broth due to strong hydrophobic interaction. It was hardly monomerized even by urea at high concentration. This multimer has been reported to diminish specific receptor-binding activity of hG-CSF and causes undesirable problems in the downstream process. When the rhG-CSF was secreted to extracellular broth in the presence of a non-ionic surfactant (Tween 80) in the culture media, the multimerization of the secreted rhGCSF was efficiently prevented in the fed-batch cultures. Also, the monomer fraction and secretion efficiency of rhG-CSF were significantly increased at the higher culture pH (6.5). Without using any denaturing agents, the secreted rhG-CSF monomer was easily purified with high recovery yield and purity via a simple purification process under acidic conditions, consisting of diafiltration, cation exchange, and gel filtration chromatography. A lyophilization process devoid of intermonomer aggregation was also designed using effective stabilizing agents.-
dc.titleImproved process for production of recombinant yeast-derived monomeric human G-CSF-
dc.title.alternativeImproved process for production of recombinant yeast-derived monomeric human G-CSF-
dc.citation.titleApplied Microbiology and Biotechnology-
dc.contributor.affiliatedAuthorJee Won Lee-
dc.contributor.affiliatedAuthorYoung Hoon Park-
dc.identifier.bibliographicCitationApplied Microbiology and Biotechnology, vol. 52, no. 3, pp. 338-344-
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.