Platelet supernatant promotes proliferation of auricular chondrocytes and formation of chondrocyte mass

Cited 23 time in scopus
Metadata Downloads
Title
Platelet supernatant promotes proliferation of auricular chondrocytes and formation of chondrocyte mass
Author(s)
Sung Yurl Yang; Sang Tae Ahn; Jong Won Rhie; Kun Yeong Lee; Jae Hoon Choi; Byung Jae Lee; Goo Taeg Oh
Bibliographic Citation
Annals of Plastic Surgery, vol. 44, no. 4, pp. 405-411
Publication Year
2000
Abstract
Recently proposed procedures for in vitro generation of new cartilage may be difficult to perform in humans because so many chondrocytes are needed for tissue engineering. In this study the authors investigated new, efficient, low-cost techniques for the isolation and culture of chondrocytes from the ear cartilage of the rabbit. They performed a low-density monolayer culture with a low concentration (0.5%, 1%) of human platelet supernatant and observed cell proliferation (seeding efficiency, deoxyribonucleic acid synthesis), matrix synthesis (glycosaminoglycan synthesis), and the expression of type I and type II collagen (reverse transcriptase polymerase chain reaction). Seeding efficiency was increased in 1% of platelet supernatant-treated cultures by two to three times compared with untreated controls. One percent platelet supernatant had increased the incorporation of [3H]-thymidine by 1.9 to 2.5 times at 72 hours compared with controls. Glycosaminoglycan synthesis was increased in platelet supernatant-treated chondrocytes at 96 hours compared with controls. Chondrocytes treated with 1% platelet supernatant showed a decreased expression of the type II collagen gene. Supplementation with a high concentration (10%) of the platelet supernatant provided the conditions for in vitro chondrocyte mass formation. These results indicate that proliferation and matrix synthesis of auricular chondrocytes is stimulated by a low concentration of platelet supernatant. On the other hand, chondrocytes were immobilized by a high concentration of platelet supernatant. Platelet supernatant may be useful as an inexpensive autologous source of multiple growth factors to enhance chondrocyte proliferation, and also may play the role of scaffold for chondrocytes. Additional investigation is underway to generate culture conditions that promote the differentiation as well as the proliferation of chondrocytes.
ISSN
0148-7043
Publisher
Kluwer
DOI
http://dx.doi.org/10.1097/00000637-200044040-00009
Type
Article
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.