Glucagon-induced self-association of recombinant proteins in Escherichia coli and affinity purification using a fragment of glucagon receptor

Cited 0 time in scopus
Metadata Downloads
Title
Glucagon-induced self-association of recombinant proteins in Escherichia coli and affinity purification using a fragment of glucagon receptor
Author(s)
Dae Young Kim; Jee Won Lee; Vibhor Saraswat; Young Hoon Park
Bibliographic Citation
Biotechnology and Bioengineering, vol. 69, no. 4, pp. 418-428
Publication Year
2000
Abstract
The specific molecular interactions of α-helical peptide, human glucagon (i.e., intermolecular self-association and specific receptor-binding affinity) provided a rationale for using the glucagon as the fusion expression partner to achieve high productivity of foreign proteins both in vivo (in bacterial fusion-expression system) and in vitro (in affinity column chromatography). The fusion of glucagon peptide(s) effectively promoted homogeneous aggregate formation of recombinant proteins while avoiding intermolecular crosslinking by disulfide bridges. High sensitivity of the self-aggregation to sequence effects resulted from two distinct nonpolar domains of glucagon, determining specificity of molecular interaction and aggregate size of recombinant proteins. An N-terminal domain of glucagon molecule (Phe6-Tyr10-Tyr13) could be a certain hydrophobic moiety involved in intermolecular self-association (probably, via helix-helix docking), while a C-terminal domain (Phe22-Trp25-Leu26) seems to critically affect the oligomer size in the off-pathway aggregation of synthesized fusion proteins. An N-terminal extracellular domain of human glucagon receptor was recombinantly expressed in Escherichia coli, immobilized to a chromatography column, and efficiently renatured to a conformation that attains high specificity in interaction with N-terminus glucagon molecules of recombinant fusion proteins. Through column chromatography employing the receptor fragment as affinity ligand, the recombinant proteins were efficiently purified from total intracellular proteins, and the long-term ligand stability was evidently proven through multiple cyclic-purification experiments. Major scaffolds for using protein ligands are large-scale production in a low-cost expression system and long-term stable operation with selective-binding affinity. From this point of view, the extracellular fragment of human glucagon receptor used in this study seems to be a new potent ligand for fusion protein-based affinity chromatography.
Keyword
glucagonfusion proteinself-associationreceptoraffinity purification
ISSN
0006-3592
Publisher
Wiley
DOI
http://dx.doi.org/10.1002/1097-0290(20000820)69:4<418::AID-BIT8>3.0.CO;2-C
Type
Article
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.