In vitro binding analysis of hepatitis B virus preS-derived putative helper T-cell epitopes to MHC class II molecules using stable HLA-DRB1*0405/DRA*0101 transfected cells

Cited 0 time in scopus
Metadata Downloads
Title
In vitro binding analysis of hepatitis B virus preS-derived putative helper T-cell epitopes to MHC class II molecules using stable HLA-DRB1*0405/DRA*0101 transfected cells
Author(s)
Jung Hwan Kim; Jung Hyun Park; Yun Jung Lee; Eun Wie Cho; Yong Soo Bae; Kil Lyong Kim
Bibliographic Citation
IUBMB Life, vol. 50, no. 6, pp. 379-384
Publication Year
2000
Abstract
In designing epitope-based vaccines, the inclusion of a helper T-lymphocyte (HTL) epitope is necessary to elicit both humoral and cellular immune responses. Whereas the preS region of the hepatitis B virus (HBV) surface antigen is well-known to raise protective immunity, the epitopes for activating HTLs are poorly characterized. In an attempt to identify such epitopes, the HBV-preS region was screened for peptide sequences with HLA-DR4 binding motifs, and putative HTL candidate peptides were synthesized in a biotinylated form. Using L929 mouse fibroblasts stably transfected with HLA-DRB1*0405 and HLA-DRA*0101 cDNA, specific binding of the peptides was then detected using fluorescence-conjugated streptavidin. The cell-surface expression of HLA-DR molecules on transfectants was confirmed by confocal microscopy, and quantitative analysis of candidate peptide binding was performed by fluorescence activated cell sorting. Among eight preS-derived peptides, three candidate peptides - namely preS1(23-33), preS1(62-72), and preS1(76-86) - showed good binding characteristics to HLA-DR4 molecules, among which the preS1(23-33) epitope was regarded as the most promising HTL epitope. Further studies with these candidate HTL stimulatory peptides will show their ability to activate the human immune system against HBV.
Keyword
HLA-DRhepatitis B viruspeptidepreS regionT-cell epitope
ISSN
1521-6543
Publisher
Wiley
DOI
http://dx.doi.org/10.1080/713803746
Type
Article
Appears in Collections:
Division of Biomedical Research > Rare Disease Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.