Integrative analysis of multiple gene expression profiles applied to liver cancer study

Cited 77 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorJung Kyoon Choi-
dc.contributor.authorJ Y Choi-
dc.contributor.authorD G Kim-
dc.contributor.authorD W Choi-
dc.contributor.authorB Y Kim-
dc.contributor.authorK H Lee-
dc.contributor.authorYoung Il Yeom-
dc.contributor.authorHyang Sook Yoo-
dc.contributor.authorO J Yoo-
dc.contributor.authorSang Soo Kim-
dc.date.accessioned2017-04-19T09:01:10Z-
dc.date.available2017-04-19T09:01:10Z-
dc.date.issued2004-
dc.identifier.issn00145793-
dc.identifier.uri10.1016/j.febslet.2004.03.081ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/6518-
dc.description.abstractA statistical method for combining multiple microarray studies has been previously developed by the authors. Here, we present the application of the method to our hepatocellular carcinoma (HCC) data and report new findings on gene expression changes accompanying HCC. From the cross-verification result of our studies and that of published studies, we found that single microarray analysis might lead to false findings. To avoid those pitfalls of single-set analyses, we employed our effect size method to integrate multiple datasets. of 9982 genes analyzed, 477 significant genes were identified with a false discovery rate of 10%. Gene ontology (GO) terms associated with these genes were explored to validate our method in the biological context with respect to HCC. Furthermore, it was demonstrated that the data integration process increases the sensitivity of analysis and allows small but consistent expression changes to be detected. These integration-driven discoveries contained meaningful and interesting genes not reported in previous expression profiling studies, such as growth hormone receptor, erythropoietin receptor, tissue factor pathway inhibitor-2, etc. Our findings support the use of meta-analysis for a variety of microarray data beyond the scope of this specific application.-
dc.publisherWiley-
dc.titleIntegrative analysis of multiple gene expression profiles applied to liver cancer study-
dc.title.alternativeIntegrative analysis of multiple gene expression profiles applied to liver cancer study-
dc.typeArticle-
dc.citation.titleFEBS Letters-
dc.citation.number1-
dc.citation.endPage100-
dc.citation.startPage93-
dc.citation.volume565-
dc.contributor.affiliatedAuthorYoung Il Yeom-
dc.contributor.alternativeName최정균-
dc.contributor.alternativeName최종영-
dc.contributor.alternativeName김대건-
dc.contributor.alternativeName최동욱-
dc.contributor.alternativeName김부여-
dc.contributor.alternativeName이기호-
dc.contributor.alternativeName염영일-
dc.contributor.alternativeName유향숙-
dc.contributor.alternativeName유욱준-
dc.contributor.alternativeName김상수-
dc.identifier.bibliographicCitationFEBS Letters, vol. 565, no. 1, pp. 93-100-
dc.identifier.doi10.1016/j.febslet.2004.03.081-
dc.subject.keywordFEM, fixed effects model-
dc.subject.keywordGO, gene ontology-
dc.subject.keywordHBV, hepatitis B virus-
dc.subject.keywordHCC, hepatocellular carcinoma-
dc.subject.keywordHepatocellular carcinoma-
dc.subject.keywordLiver cancer-
dc.subject.keywordMeta-analysis-
dc.subject.keywordMicroarray-
dc.subject.keywordREM, random effects model-
dc.subject.localFEM, fixed effects model-
dc.subject.localGO, gene ontology-
dc.subject.localHBV, hepatitis B virus-
dc.subject.localHCC, hepatocellular carcinoma-
dc.subject.localHepatocellular carcinoma-
dc.subject.localHepatocellular carcinoma (HCC)-
dc.subject.localLiver cancer-
dc.subject.localMeta-analysis-
dc.subject.localMicroarray-
dc.subject.localREM, random effects model-
dc.description.journalClassY-
Appears in Collections:
Division of Biomedical Research > Personalized Genomic Medicine Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.