The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens

Cited 189 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorS H Hong-
dc.contributor.authorJ S Kim-
dc.contributor.authorS Y Lee-
dc.contributor.authorY H In-
dc.contributor.authorS S Choi-
dc.contributor.authorJeong Keun Rhi-
dc.contributor.authorChang Hoon Kim-
dc.contributor.authorHaeyoung Jeong-
dc.contributor.authorCheol-Goo Hur-
dc.contributor.authorJ J Kim-
dc.date.accessioned2017-04-19T09:01:37Z-
dc.date.available2017-04-19T09:01:37Z-
dc.date.issued2004-
dc.identifier.issn0733-222X-
dc.identifier.uri10.1038/nbt1010ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/6641-
dc.description.abstractThe rumen represents the first section of a ruminant animal's stomach, where feed is collected and mixed with microorganisms for initial digestion. The major gas produced in the rumen is CO2 (65.5 mol%), yet the metabolic characteristics of capnophilic (CO2-loving) microorganisms are not well understood. Here we report the 2,314,078 base pair genome sequence of Mannheimia succiniciproducens MBEL55E, a recently isolated capnophilic Gram-negative bacterium from bovine rumen, and analyze its genome contents and metabolic characteristics. The metabolism of M. succiniciproducens was found to be well adapted to the oxygen-free rumen by using fumarate as a major electron acceptor. Genome-scale metabolic flux analysis indicated that CO2 is important for the carboxylation of phosphoenolpyruvate to oxaloacetate, which is converted to succinic acid by the reductive tricarboxylic acid cycle and menaquinone systems. This characteristic metabolism allows highly efficient production of succinic acid, an important four-carbon industrial chemical.-
dc.publisherSpringer-Nature Pub Group-
dc.titleThe genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens-
dc.title.alternativeThe genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens-
dc.typeArticle-
dc.citation.titleNature Biotechnology-
dc.citation.number10-
dc.citation.endPage1281-
dc.citation.startPage1275-
dc.citation.volume22-
dc.contributor.affiliatedAuthorJeong Keun Rhi-
dc.contributor.affiliatedAuthorChang Hoon Kim-
dc.contributor.affiliatedAuthorHaeyoung Jeong-
dc.contributor.affiliatedAuthorCheol-Goo Hur-
dc.contributor.alternativeName홍순호-
dc.contributor.alternativeName김진식-
dc.contributor.alternativeName이상엽-
dc.contributor.alternativeName인용호-
dc.contributor.alternativeName최순심-
dc.contributor.alternativeName이정근-
dc.contributor.alternativeName김창훈-
dc.contributor.alternativeName정해영-
dc.contributor.alternativeName허철구-
dc.contributor.alternativeName김재종-
dc.identifier.bibliographicCitationNature Biotechnology, vol. 22, no. 10, pp. 1275-1281-
dc.identifier.doi10.1038/nbt1010-
dc.description.journalClassY-
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.