Feature genes of hepatitis B virus-positive hepatocellular carcinoma, established by its molecular discrimination approach using prediction analysis of microarray

Cited 24 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorB Y Kim-
dc.contributor.authorJ G Lee-
dc.contributor.authorS Park-
dc.contributor.authorJ Y Ahn-
dc.contributor.authorY J Ju-
dc.contributor.authorJ H Chung-
dc.contributor.authorC J Han-
dc.contributor.authorS H Jeong-
dc.contributor.authorYoung Il Yeom-
dc.contributor.authorSang Soo Kim-
dc.contributor.authorY S Lee-
dc.contributor.authorC M Kim-
dc.contributor.authorE M Eom-
dc.contributor.authorD H Lee-
dc.contributor.authorK Y Choi-
dc.contributor.authorM H Cho-
dc.contributor.authorK S Suh-
dc.contributor.authorD W Choi-
dc.contributor.authorK H Lee-
dc.date.accessioned2017-04-19T09:02:21Z-
dc.date.available2017-04-19T09:02:21Z-
dc.date.issued2004-
dc.identifier.issn0925-4439-
dc.identifier.uri10.1016/j.bbadis.2004.07.004ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/6844-
dc.description.abstractRecent introduction of a learning algorithm for cDNA microarray analysis has permitted to select feature set to accurately distinguish human cancers according to their pathological judgments. Here, we demonstrate that hepatitis B virus-positive hepatocellular carcinoma (HCC) could successfully be identified from non-tumor liver tissues by supervised learning analysis of gene expression profiling. Through learning and cross-validating HCC sample set, we could identify an optimized set of 44 genes to discriminate the status of HCC from non-tumor liver tissues. In an analysis of other blind-tested HCC sample sets, this feature set was found to be statistically significant, indicating the reproducibility of our molecular discrimination approach with the defined genes. One prominent finding was an asymmetrical distribution pattern of expression profiling in HCC, in which the number of down-regulated genes was greater than that of up-regulated genes. In conclusion, the present findings indicate that application of learning algorithm to HCC may establish a reliable feature set of genes to be useful for therapeutic target of HCC, and that the asymmetric expression pattern may emphasize the importance of suppressed genes in HCC.-
dc.publisherElsevier-
dc.titleFeature genes of hepatitis B virus-positive hepatocellular carcinoma, established by its molecular discrimination approach using prediction analysis of microarray-
dc.title.alternativeFeature genes of hepatitis B virus-positive hepatocellular carcinoma, established by its molecular discrimination approach using prediction analysis of microarray-
dc.typeArticle-
dc.citation.titleBiochimica et Biophysica Acta-Molecular Basis of Disease-
dc.citation.number1-
dc.citation.endPage61-
dc.citation.startPage50-
dc.citation.volume1739-
dc.contributor.affiliatedAuthorYoung Il Yeom-
dc.contributor.affiliatedAuthorSang Soo Kim-
dc.contributor.alternativeName김부여-
dc.contributor.alternativeName이제근-
dc.contributor.alternativeName박선호-
dc.contributor.alternativeName안재연-
dc.contributor.alternativeName주연진-
dc.contributor.alternativeName정진행-
dc.contributor.alternativeName한철주-
dc.contributor.alternativeName정숙향-
dc.contributor.alternativeName염영일-
dc.contributor.alternativeName김상수-
dc.contributor.alternativeName이용성-
dc.contributor.alternativeName김창민-
dc.contributor.alternativeName엄은미-
dc.contributor.alternativeName이동희-
dc.contributor.alternativeName최강열-
dc.contributor.alternativeName조명행-
dc.contributor.alternativeName서경숙-
dc.contributor.alternativeName최동욱-
dc.contributor.alternativeName이기호-
dc.identifier.bibliographicCitationBiochimica et Biophysica Acta-Molecular Basis of Disease, vol. 1739, no. 1, pp. 50-61-
dc.identifier.doi10.1016/j.bbadis.2004.07.004-
dc.subject.keywordHepatocellular carcinoma-
dc.subject.keywordLearning-
dc.subject.keywordMicroarray-
dc.subject.keywordPrediction-
dc.subject.localHepatocellular carcinomas-
dc.subject.localHepatocellular carcinoma (HCC)-
dc.subject.localHepatocellular carcinoma-
dc.subject.localhepatocellular carcinoma (HCC)-
dc.subject.localhepatocellular carcinoma-
dc.subject.localLearning-
dc.subject.localmicroarray-
dc.subject.localmicroarry-
dc.subject.localMicroarray-
dc.subject.localmicroarrays-
dc.subject.localPrediction-
dc.subject.localprediction-
dc.description.journalClassY-
Appears in Collections:
Division of A.I. & Biomedical Research > Genomic Medicine Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.