DC Field | Value | Language |
---|---|---|
dc.contributor.author | T W Chung | - |
dc.contributor.author | B S Koo | - |
dc.contributor.author | K O Kim | - |
dc.contributor.author | H S Jeong | - |
dc.contributor.author | Min-Gon Kim | - |
dc.contributor.author | K H Chung | - |
dc.contributor.author | I S Lee | - |
dc.contributor.author | C H Kim | - |
dc.date.accessioned | 2017-04-19T09:04:09Z | - |
dc.date.available | 2017-04-19T09:04:09Z | - |
dc.date.issued | 2006 | - |
dc.identifier.issn | 0364-3190 | - |
dc.identifier.uri | 10.1007/s11064-005-9264-3 | ko |
dc.identifier.uri | https://oak.kribb.re.kr/handle/201005/7311 | - |
dc.description.abstract | The present study investigated the effect of the medicinal plant Salviae miltiorrhizae radix (SMR) on dopaminergic neurotransmission in comparison with amphetamine. The effect of SM (0.1 g/ml) on K+ (20 mM)-stimulated dopamine (DA) release from rat striatal slices was compared with amphetamine (10-4 M). Amphetamine and SMR significantly increased K +-stimulated DA release (P<0.001) from rat striatal slices when compared with K+-stimulated alone. On the other hand, to examine whether in vitro SMR treatment induces DA release in PC12 cells, the role of protein kinases has been investigated in the induction of the SMR-mediated events by using inhibitors of protein kinase C (PKC), mitogen activated protein kinase (MAP kinase) or protein kinase A (PKA). PKC inhibitors chelerythrine (50 and 100 nM), Ro31-8220 (100 nM) and the MAP kinase inhibitor, PD98059 (20 μM) inhibited the ability of SMR to elicit the SMR-stimulated DA release. The direct-acting PKC activator, 12-O-tetradecanoyl phorbol 13-acetate (TPA, 100 nM) mimicked the ability of SMR to elicit DA release. On the contrary, a selective PKA inhibitor, 50 μM Rp-8-Br-cAMP, blocked the development of SMR-stimulated DA release. The results demonstrated that SMR may stimulate DA release and that SMR-induced increases in MAP kinase and PKC are important for induction of the enhancement in transporter-mediated DA release and PKA was also required for the enhancement in SMR-stimulated DA release. SMR treatment (0.1-10 μg/ml) to the hydrogen peroxide (H2O2)-treated PC12 cells activated the enzyme activities such as catalase, superoxide dismutase and glutathione peroxidase, and decreased the malondialdehyde level, indicating that SMR has also protective effects against free radical-induced cell toxicity. Therefore, the mechanism by which SMR induces the enhancement in SMR-stimulated DA release is apparent. It remains to be determined whether the effect of SMR on DA function is important in its therapeutic use in the treatment of drug addiction. | - |
dc.publisher | Springer | - |
dc.title | Salviae Miltiorrhizae BGE Radix increases rat striatal K +-stimulated dopamine release and activates the dopamine release with protection against hydrogen peroxide-induced injury in rat pheochromocytoma PC12 cells | - |
dc.title.alternative | Salviae Miltiorrhizae BGE Radix increases rat striatal K +-stimulated dopamine release and activates the dopamine release with protection against hydrogen peroxide-induced injury in rat pheochromocytoma PC12 cells | - |
dc.type | Article | - |
dc.citation.title | Neurochemical Research | - |
dc.citation.number | 1 | - |
dc.citation.endPage | 120 | - |
dc.citation.startPage | 109 | - |
dc.citation.volume | 31 | - |
dc.contributor.affiliatedAuthor | Min-Gon Kim | - |
dc.contributor.alternativeName | 정태욱 | - |
dc.contributor.alternativeName | 구병수 | - |
dc.contributor.alternativeName | 김경오 | - |
dc.contributor.alternativeName | 정희상 | - |
dc.contributor.alternativeName | 김민곤 | - |
dc.contributor.alternativeName | 정강흥 | - |
dc.contributor.alternativeName | 이인선 | - |
dc.contributor.alternativeName | 김철호 | - |
dc.identifier.bibliographicCitation | Neurochemical Research, vol. 31, no. 1, pp. 109-120 | - |
dc.identifier.doi | 10.1007/s11064-005-9264-3 | - |
dc.subject.keyword | Amphetamine | - |
dc.subject.keyword | Catalase | - |
dc.subject.keyword | Dopamine | - |
dc.subject.keyword | Free radicals | - |
dc.subject.keyword | Glutathione peroxidase | - |
dc.subject.keyword | Hydrogen peroxide | - |
dc.subject.keyword | Malondialdehyde | - |
dc.subject.keyword | MAP kinase | - |
dc.subject.keyword | PC12 cells | - |
dc.subject.keyword | PKA | - |
dc.subject.keyword | PKC | - |
dc.subject.keyword | Salviae miltiorrhizae radix | - |
dc.subject.keyword | Superoxide dismutase | - |
dc.subject.local | Amphetamine | - |
dc.subject.local | amphetamine | - |
dc.subject.local | Catalase | - |
dc.subject.local | catalase | - |
dc.subject.local | Dopamine | - |
dc.subject.local | dopamine | - |
dc.subject.local | free radicals | - |
dc.subject.local | Free radicals | - |
dc.subject.local | free radical | - |
dc.subject.local | Glutathione peroxidase | - |
dc.subject.local | glutathione peroxidase | - |
dc.subject.local | Hydrogen peroxide | - |
dc.subject.local | hydrogen peroxide | - |
dc.subject.local | malondialdehyde | - |
dc.subject.local | Malondialdehyde | - |
dc.subject.local | MAP kinases | - |
dc.subject.local | map kinase | - |
dc.subject.local | MAP kinase | - |
dc.subject.local | PC12 cells | - |
dc.subject.local | PKA | - |
dc.subject.local | PKC | - |
dc.subject.local | Salviae miltiorrhizae radix | - |
dc.subject.local | superoxide dismutase | - |
dc.subject.local | Superoxide dismutase | - |
dc.description.journalClass | Y | - |
There are no files associated with this item.
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.